skip to main content

Title: mmLSH: A Practical and Efficient Technique for Processing Approximate Nearest Neighbor Queries on Multimedia Data
Many large multimedia applications require efficient processing of nearest neighbor queries. Often, multimedia data are represented as a collection of important high-dimensional feature vectors. Existing Locality Sensitive Hashing (LSH) techniques require users to find top-k similar feature vectors for each of the feature vectors that represent the query object. This leads to wasted and redundant work due to two main reasons: 1) not all feature vectors may contribute equally in finding the top-k similar multimedia objects, and 2) feature vectors are treated independently during query processing. Additionally, there is no theoretical guarantee on the returned multimedia results. In this work, we propose a practical and efficient indexing approach for finding top-k approximate nearest neighbors for multimedia data using LSH called mmLSH, which can provide theoretical guarantees on the returned multimedia results. Additionally, we present a buffer-conscious strategy to speed up the query processing. Experimental evaluation shows significant gains in performance time and accuracy for different real multimedia datasets when compared against state-of-the-art LSH techniques.
; ;
Award ID(s):
Publication Date:
Journal Name:
Similarity Search and Applications. SISAP 2020
Sponsoring Org:
National Science Foundation
More Like this
  1. Finding similar images is a necessary operation in many multimedia applications. Images are often represented and stored as a set of high-dimensional features, which are extracted using localized feature extraction algorithms. Locality Sensitive Hashing is one of the most popular approximate processing techniques for finding similar points in high-dimensional spaces. Locality Sensitive Hashing (LSH) and its variants are designed to find similar points, but they are not designed to find objects (such as images, which are made up of a collection of points) efficiently. In this paper, we propose an index structure, Bitmap-Image LSH (bImageLSH), for efficient processing of high-dimensional images. Using a real dataset, we experimentally show the performance benefit of our novel design while keeping the accuracy of the image results high.
  2. Similarity search in high-dimensional spaces is an important task for many multimedia applications. Due to the notorious curse of dimensionality, approximate nearest neighbor techniques are preferred over exact searching techniques since they can return good enough results at a much better speed. Locality Sensitive Hashing (LSH) is a very popular random hashing technique for finding approximate nearest neighbors. Existing state-of-the-art Locality Sensitive Hashing techniques that focus on improving performance of the overall process, mainly focus on minimizing the total number of IOs while sacrificing the overall processing time. The main time-consuming process in LSH techniques is the process of finding neighboring points in projected spaces. We present a novel index structure called radius-optimized Locality Sensitive Hashing (roLSH). With the help of sampling techniques and Neural Networks, we present two techniques to find neighboring points in projected spaces efficiently, without sacrificing the accuracy of the results. Our extensive experimental analysis on real datasets shows the performance benefit of roLSH over existing state-of-the-art LSH techniques.
  3. Many content-based image search and instance retrieval systems implement bag-of-visual-words strategies for candidate selection. Visual processing of an image results in hundreds of visual words that make up a document, and these words are used to build an inverted index. Query processing then consists of an initial candidate selection phase that queries the inverted index, followed by more complex reranking of the candidates using various image features. The initial phase typically uses disjunctive top-k query processing algorithms originally proposed for searching text collections. Our objective in this paper is to optimize the performance of disjunctive top-k computation for candidate selection in content-based instance retrieval systems. While there has been extensive previous work on optimizing this phase for textual search engines, we are unaware of any published work that studies this problem for instance retrieval, where both index and query data are quite different from the distributions commonly found and exploited in the textual case. Using data from a commercial large-scale instance retrieval system, we address this challenge in three steps. First, we analyze the quantitative properties of index structures and queries in the system, and discuss how they differ from the case of text retrieval. Second, we describe an optimizedmore »term-at-a-time retrieval strategy that significantly outperforms baseline term-at-a-time and document-at-a-time strategies, achieving up to 66% speed-up over the most efficient baseline. Finally, we show that due to the different properties of the data, several common safe and unsafe early termination techniques from the literature fail to provide any significant performance benefits.« less
  4. We study theta-joins in general and join predicates with conjunctions and disjunctions of inequalities in particular, focusing on ranked enumeration where the answers are returned incrementally in an order dictated by a given ranking function. Our approach achieves strong time and space complexity properties: with n denoting the number of tuples in the database, we guarantee for acyclic full join queries with inequality conditions that for every value of k , the k top-ranked answers are returned in O ( n polylog n + k log k ) time. This is within a polylogarithmic factor of O ( n + k log k ), i.e., the best known complexity for equi-joins, and even of O ( n + k ), i.e., the time it takes to look at the input and return k answers in any order. Our guarantees extend to join queries with selections and many types of projections (namely those called "free-connex" queries and those that use bag semantics). Remarkably, they hold even when the number of join results is n ℓ for a join of ℓ relations. The key ingredient is a novel O ( n polylog n )-size factorized representation of the query output , whichmore »is constructed on-the-fly for a given query and database. In addition to providing the first nontrivial theoretical guarantees beyond equi-joins, we show in an experimental study that our ranked-enumeration approach is also memory-efficient and fast in practice, beating the running time of state-of-the-art database systems by orders of magnitude.« less
  5. In the last two decades, the IR community has seen numerous advances in top-k query processing and inverted index compression techniques. While newly proposed methods are typically compared against several baselines, these evaluations are often very limited, and we feel that there is no clear overall picture on the best choices of algorithms and compression methods. In this paper, we attempt to address this issue by evaluating a number of state-of-the-art index compression methods and safe disjunctive DAAT query processing algorithms. Our goal is to understand how much index compression performance impacts overall query processing speed, how the choice of query processing algorithm depends on the compression method used, and how performance is impacted by document reordering techniques and the number of results returned, keeping in mind that current search engines typically use sets of hundreds or thousands of candidates for further reranking.