skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse
Quantum computers are traditionally operated by programmers at the granularity of a gate-based instruction set. However, the actual device-level control of a quantum computer is performed via analog pulses. We introduce a compiler that exploits direct control at this microarchitectural level to achieve significant improvements for quantum programs. Unlike quantum optimal control, our approach is bootstrapped from existing gate calibrations and the resulting pulses are simple. Our techniques are applicable to any quantum computer and realizable on current devices. We validate our techniques with millions of experimental shots on IBM quantum computers, controlled via the OpenPulse control interface. For representative benchmarks, our pulse control techniques achieve both 1.6x lower error rates and 2x faster execution time, relative to standard gate-based compilation. These improvements are critical in the near-term era of quantum computing, which is bottlenecked by error rates and qubit lifetimes.  more » « less
Award ID(s):
1730449
PAR ID:
10209009
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
Page Range / eLocation ID:
186 to 200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scalability of today’s superconducting quantum computers is limited due to the huge costs of generating/routing microwave control pulses per qubit from room temperature. One active research area in both industry and academia is to push the classical controllers to the dilution refrigerator in order to increase the scalability of quantum computers. Superconducting Single Flux Quantum (SFQ) is a classical logic technology with low power consumption and ultra-high speed, and thus is a promising candidate for in-fridge classical controllers with maximized scalability. Prior work has demonstrated high-fidelity SFQ-based single-qubit gates. However, little research has been done on SFQ-based multi-qubit gates, which are necessary to realize SFQ-based universal quantum computing.In this paper, we present the first thorough analysis of SFQ-based two-qubit gates. Our observations show that SFQ-based two-qubit gates tend to have high leakage to qubit non-computational subspace, which presents severe design challenges. We show that despite these challenges, we can realize gates with high fidelity by carefully designing optimal control methods and qubit architectures. We develop optimal control methods that suppress leakage, and also investigate various qubit architectures that reduce the leakage. After carefully engineering our SFQ-friendly quantum system, we show that it can achieve similar gate fidelity and gate time to microwave-based quantum systems. The promising results of this paper show that (1) SFQ-based universal quantum computation is both feasible and effective; and (2) SFQ is a promising approach in designing classical controller for quantum machines because it can increase the scalability while preserving gate fidelity and performance. 
    more » « less
  2. In the evolving field of quantum computing, optimizing Quantum Error Correction (QEC) parameters is crucial due to the varying types and amounts of physical noise across quantum computers. Traditional simulators use a forward paradigm to derive logical error rates from inputs like code distance and rounds, but this can lead to resource wastage. Adjusting QEC parameters manually with tools like STIM is often inefficient, especially given the daily fluctuations in quantum error rates. To address this, we introduce MITS, a reverse engineering tool for STIM that automatically determines optimal QEC settings based on a given quantum computer’s noise model and a target logical error rate. This approach minimizes qubit and gate usage by precisely matching the necessary logical error rate with the constraints of qubit numbers and gate fidelity. Our investigations into various heuristics and machine learning models for MITS show that XGBoost and Random Forest regressions, with Pearson correlation coefficients of 0.98 and 0.96, respectively, are highly effective in this context. 
    more » « less
  3. The interest in quantum computing has grown rapidly in recent years, and with it grows the importance of securing quantum circuits. A novel type of threat to quantum circuits that dedicated attackers could launch are power trace attacks. To address this threat, this paper presents first formalization and demonstration of using power traces to unlock and steal quantum circuit secrets. With access to power traces, attackers can recover information about the control pulses sent to quantum computers. From the control pulses, the gate level description of the circuits, and eventually the secret algorithms can be reverse engineered. This work demonstrates how and what information could be recovered. This work uses algebraic reconstruction from power traces to realize two new types of single trace attacks: per-channel and total power attacks. The former attack relies on per-channel measurements to perform a brute-force attack to reconstruct the quantum circuits. The latter attack performs a single-trace attack using Mixed-Integer Linear Programming optimization. Through the use of algebraic reconstruction, this work demonstrates that quantum circuit secrets can be stolen with high accuracy. Evaluation on 32 real benchmark quantum circuits shows that our technique is highly effective at reconstructing quantum circuits. The findings not only show the veracity of the potential attacks, but also the need to develop new means to protect quantum circuits from power trace attacks. Throughout this work real control pulse information from real quantum computers is used to demonstrate potential attacks based on simulation of collection of power traces. 
    more » « less
  4. We introduce a Xilinx RF System-on-Chip (RFSoC)-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short), which supports the direct synthesis of control pulses with carrier frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC field-programmable gate array, custom firmware, and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average gate fidelity of [Formula: see text]. All of the schematics, firmware, and software are open-source. 
    more » « less
  5. Abstract The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7and digital simulations15
    more » « less