Although Software-Defined Wide Area Networks (SD-WANs) are now widely deployed in several production networks, they are largely restricted to traffic engineering ap- proaches based on layer 4 (L4) of the network protocol stack. Such approaches result in improved Quality-of-Service (QoS) of the network overall without necessarily focussing on the requirements of a specific application. However, the emergence of application protocols such as QUIC and HTTP/2 needs an in- vestigation of layer 5-based (L5) approaches in order to improve users’ Quality-of-Experience (QoE). In this paper, we leverage the capabilities of flexible, P4-based switches that incorporate protocol-independent packet processing in order to intelligently route traffic based on application headers. We use Adaptive Bit Rate (ABR) video streaming as an example to show how such an approach can not only provide flexible traffic management but also improve application QoE. Our evaluation consists of an actual deployment in a research testbed, Chameleon, where we leverage the benefits of fast paths in order to retransmit video segments in higher qualities. Further, we analyze real-world ABR streaming sessions from a large-scale CDN and show that our approach can successfully maximize QoE for all users in the dataset.
more »
« less
Adaptive Shrinkage Estimation for Streaming Graphs
Networks are a natural representation of complex systems across the sciences, and higher-order dependencies are central to the understanding and modeling of these systems. However, in many practical applications such as online social networks, networks are massive, dynamic, and naturally streaming, where pairwise interactions among vertices become available one at a time in some arbitrary order. The massive size and streaming nature of these networks allow only partial observation, since it is infeasible to analyze the entire network. Under such scenarios, it is challenging to study the higher-order structural and connectivity patterns of streaming networks. In this work, we consider the fundamental problem of estimating the higher-order dependencies using adaptive sampling. We propose a novel adaptive, single-pass sampling framework and unbiased estimators for higher-order network analysis of large streaming networks. Our algorithms exploit adaptive techniques to identify edges that are highly informative for efficiently estimating the higher-order structure of streaming networks from small sample data. We also introduce a novel James-Stein shrinkage estimator to reduce the estimation error. Our approach is fully analytic, computationally efficient, and can be incrementally updated in a streaming setting. Numerical experiments on large networks show that our approach is superior to baseline methods.
more »
« less
- PAR ID:
- 10209361
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- Volume:
- 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex systems, represented as dynamic networks, comprise of components that influence each other via direct and/or indirect interactions. Recent research has shown the importance of using Higher-Order Networks (HONs) for modeling and analyzing such complex systems, as the typical Markovian assumption in developing the First Order Network (FON) can be limiting. This higher-order network representation not only creates a more accurate representation of the underlying complex system, but also leads to more accurate network analysis. In this paper, we first present a scalable and accurate model, BuildHON+, for higher-order network representation of data derived from a complex system with various orders of dependencies. Then, we show that this higher-order network representation modeled by BuildHON+ is significantly more accurate in identifying anomalies than FON, demonstrating a need for the higher-order network representatiomore » « less
-
Abstract Repeated small dynamic networks are integral to studies in evolutionary game theory, where networked public goods games offer novel insights into human behaviours. Building on these findings, it is necessary to develop a statistical model that effectively captures dependencies across multiple small dynamic networks. While separable temporal exponential-family random graph models (STERGMs) have demonstrated success in modelling a large single dynamic network, their application to multiple small dynamic networks with less than 10 actors, remains unexplored. In this study, we extend the STERGM framework to accommodate multiple small dynamic networks, offering an approach to analysing such systems. Taking advantage of the small network sizes, our proposed approach improves accuracy in statistical inference through direct computation, unlike conventional approaches that rely on Markov Chain Monte Carlo methods. We demonstrate the validity of this framework through the analysis of a networked public goods experiment into individual decision-making about cooperation and defection. The resulting statistical inference uncovers insights into the dynamics of social dilemmas, showcasing the effectiveness, and robustness of this modelling and approach.more » « less
-
Abstract Plants and their insect herbivores have been a dominant component of the terrestrial ecological landscape for the past 410 million years and feature intricate evolutionary patterns and co‐dependencies. A complex systems perspective allows for both detailed resolution of these evolutionary relationships as well as comparison and synthesis across systems. Using proxy data of insect herbivore damage (denoted by the damage type or DT) preserved on fossil leaves, functional bipartite network representations provide insights into how plant–insect associations depend on geological time, paleogeographical space, and environmental variables such as temperature and precipitation. However, the metrics measured from such networks are prone to sampling bias. Such sensitivity is of special concern for plant–DT association networks in paleontological settings where sampling effort is often severely limited. Here, we explore the sensitivity of functional bipartite network metrics to sampling intensity and identify sampling thresholds above which metrics appear robust to sampling effort. Across a broad range of sampling efforts, we find network metrics to be less affected by sampling bias and/or sample size than richness metrics, which are routinely used in studies of fossil plant–DT interactions. These results provide reassurance that cross‐comparisons of plant–DT networks offer insights into network structure and function and support their widespread use in paleoecology. Moreover, these findings suggest novel opportunities for using plant–DT networks in neontological terrestrial ecology to understand functional aspects of insect herbivory across geological time, environmental perturbations, and geographic space.more » « less
-
Networked systems that occur in various domains, such as electric networks, the brain, and opinion networks, are known to obey conservation laws. For instance, electric networks obey Kirchoff’s laws, and social networks obey opinion consensus. Conservation laws are often modeled as balance equations that relate appropriate injected flows and potentials at the nodes of the networks. A recent line of work considers the problem of estimating the unknown structure of such networked systems from observations of node potentials (and only the knowledge of the statistics of injected flows). Given the dynamic nature of the systems under consideration, an equally important task is estimating the change in the structure of the network from data – the so called differential network analysis problem. That is, given two sets of node potential observations, the goal is to estimate the structural differences between the underlying networks. We formulate this novel differential network analysis problem for systems obeying conservation laws and devise a convex estimator to learn the edge changes directly from node potentials. We derive conditions under which the estimate is unique in the high-dimensional regime and devise an efficient ADMM-based approach to perform the estimation. Finally, we demonstrate the performance of our approach on synthetic and benchmark power network data.more » « less
An official website of the United States government

