Many networked systems such as electric networks, the brain, and social networks of opinion dynamics are known to obey conservation laws. Examples of this phenomenon include the Kirchoff laws in electric networks and opinion consensus in social networks. Conservation laws in networked systems are modeled as balance equations of the form X=B*Y, where the sparsity pattern of B*∈R^{p×p} captures the connectivity of the network on p nodes, and Y, X ∈ R^p are vectors of ''potentials'' and ''injected flows'' at the nodes respectively. The node potentials Y cause flows across edges which aim to balance out the potential difference, and the flows X injected at the nodes are extraneous to the network dynamics. In several practical systems, the network structure is often unknown and needs to be estimated from data to facilitate modeling, management, and control. To this end, one has access to samples of the node potentials Y, but only the statistics of the node injections X. Motivated by this important problem, we study the estimation of the sparsity structure of the matrix B* from n samples of Y under the assumption that the node injections X follow a Gaussian distribution with a known covariance Σ_X. We propose a new ℓ1-regularized maximum likelihood estimator for tackling this problem in the high-dimensional regime where the size of the network may be vastly larger than the number of samples n. We show that this optimization problem is convex in the objective and admits a unique solution. Under a new mutual incoherence condition, we establish sufficient conditions on the triple (n,p,d) for which exact sparsity recovery of B* is possible with high probability; d is the degree of the underlying graph. We also establish guarantees for the recovery of B* in the element-wise maximum, Frobenius, and operator norms. Finally, we complement these theoretical results with experimental validation of the performance of the proposed estimator on synthetic and real-world data.
more »
« less
Differential Analysis for Networks Obeying Conservation Laws
Networked systems that occur in various domains, such as electric networks, the brain, and opinion networks, are known to obey conservation laws. For instance, electric networks obey Kirchoff’s laws, and social networks obey opinion consensus. Conservation laws are often modeled as balance equations that relate appropriate injected flows and potentials at the nodes of the networks. A recent line of work considers the problem of estimating the unknown structure of such networked systems from observations of node potentials (and only the knowledge of the statistics of injected flows). Given the dynamic nature of the systems under consideration, an equally important task is estimating the change in the structure of the network from data – the so called differential network analysis problem. That is, given two sets of node potential observations, the goal is to estimate the structural differences between the underlying networks. We formulate this novel differential network analysis problem for systems obeying conservation laws and devise a convex estimator to learn the edge changes directly from node potentials. We derive conditions under which the estimate is unique in the high-dimensional regime and devise an efficient ADMM-based approach to perform the estimation. Finally, we demonstrate the performance of our approach on synthetic and benchmark power network data.
more »
« less
- PAR ID:
- 10435114
- Date Published:
- Journal Name:
- 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many papers have addressed the problem of learning the behavior (i.e., the local interaction function at each node) of a networked system through active queries, assuming that the network topology is known. We address the problem of inferring both the network topology and the behavior of such a system through active queries. Our results are for systems where the state of each node is from {0, 1} and the local functions are Boolean. We present inference algorithms under both batch and adaptive query models for dynamical systems with symmetric local functions. These algorithms show that the structure and behavior of such dynamical systems can be learnt using only a polynomial number of queries. Further, we establish a lower bound on the number of queries needed to learn such dynamical systems. We also present experimental results obtained by running our algorithms on synthetic and real-world networks.more » « less
-
null (Ed.)Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less
-
Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less
-
Extended guiding-center Vlasov–Maxwell equations are derived under the assumption of time-dependent and inhomogeneous electric and magnetic fields that obey the standard guiding-center space-timescale orderings. The guiding-center Vlasov–Maxwell equations are derived up to second order, which contains dipole and quadrupole contributions to the guiding-center polarization and magnetization that include finite-Larmor-radius corrections. Exact energy-momentum conservation laws are derived from the variational formulation of these higher-order guiding-center Vlasov–Maxwell equations.more » « less
An official website of the United States government

