Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems using a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs). RiTINI leverages time-lapse signals on a graph prior, as well as perturbations of signals at various nodes in order to effectively capture the dynamics of the underlying system. This approach is distinct from traditional causal inference networks, which are limited to inferring acyclic and static graphs. In contrast, RiTINI can infer cyclic, directed, and time-varying graphs, providing a more comprehensive and accurate representation of complex systems. The graph attention mechanism in RiTINI allows the model to adaptively focus on the most relevant interactions in time and space, while the graph neural ODEs enable continuous-time modeling of the system’s dynamics. We evaluate RiTINI’s performance on simulations of dynamical systems, neuronal networks, and gene regulatory networks, demonstrating its state-of-the-art capability in inferring interaction graphs compared to previous methods.
more »
« less
Efficient modeling of higher-order dependencies in networks: from algorithm to application for anomaly detection
Complex systems, represented as dynamic networks, comprise of components that influence each other via direct and/or indirect interactions. Recent research has shown the importance of using Higher-Order Networks (HONs) for modeling and analyzing such complex systems, as the typical Markovian assumption in developing the First Order Network (FON) can be limiting. This higher-order network representation not only creates a more accurate representation of the underlying complex system, but also leads to more accurate network analysis. In this paper, we first present a scalable and accurate model, BuildHON+, for higher-order network representation of data derived from a complex system with various orders of dependencies. Then, we show that this higher-order network representation modeled by BuildHON+ is significantly more accurate in identifying anomalies than FON, demonstrating a need for the higher-order network representatio
more »
« less
- Award ID(s):
- 1943364
- PAR ID:
- 10323550
- Date Published:
- Journal Name:
- EPJ data science
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2193-1127
- Page Range / eLocation ID:
- 15-30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work we determine the time-domain dynamics of a complex mechanical network of integer-order components, e.g., springs and dampers, with an overall transfer function described by implicitly defined operators. This type of transfer functions can be used to describe very large scale dynamics of robot formations, multi-agent systems or viscoelastic phenomena. Such large-scale integrated systems are becoming increasingly important in modern engineering systems, and an accurate model of their dynamics is very important to achieve their control. We give a time domain representation for the dynamics of the system by using a complex variable analysis to find its impulse response. Furthermore, we validate how our infinite order model can be used to describe dynamics of finite order networks, which can be useful as a model reduction method.more » « less
-
null (Ed.)Networks are a natural representation of complex systems across the sciences, and higher-order dependencies are central to the understanding and modeling of these systems. However, in many practical applications such as online social networks, networks are massive, dynamic, and naturally streaming, where pairwise interactions among vertices become available one at a time in some arbitrary order. The massive size and streaming nature of these networks allow only partial observation, since it is infeasible to analyze the entire network. Under such scenarios, it is challenging to study the higher-order structural and connectivity patterns of streaming networks. In this work, we consider the fundamental problem of estimating the higher-order dependencies using adaptive sampling. We propose a novel adaptive, single-pass sampling framework and unbiased estimators for higher-order network analysis of large streaming networks. Our algorithms exploit adaptive techniques to identify edges that are highly informative for efficiently estimating the higher-order structure of streaming networks from small sample data. We also introduce a novel James-Stein shrinkage estimator to reduce the estimation error. Our approach is fully analytic, computationally efficient, and can be incrementally updated in a streaming setting. Numerical experiments on large networks show that our approach is superior to baseline methods.more » « less
-
Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.more » « less
-
The spectral properties of traditional (dyadic) graphs, where an edge connects exactly two vertices, are widely studied in different applications. These spectral properties are closely connected to the structural properties of dyadic graphs. We generalize such connections and characterize higher-order networks by their spectral information. We first split the higher-order graphs by their “edge orders” into several uniform hypergraphs. For each uniform hypergraph, we extract the corresponding spectral information from the transition matrices of carefully designed random walks. From each spectrum, we compute the first few spectral moments and use all such spectral moments across different “edge orders” as the higher-order graph representation. We show that these moments not only clearly indicate the return probabilities of random walks but are also closely related to various higher-order network properties such as degree distribution and clustering coefficient. Extensive experiments show the utility of this new representation in various settings. For instance, graph classification on higher-order graphs shows that this representation significantly outperforms other techniques.more » « less
An official website of the United States government

