We see the external world as consisting not only of objects and their parts, but also of relations that hold between them. Visual analogy, which depends on similarities between relations, provides a clear example of how perception supports reasoning. Here we report an experiment in which we quantitatively measured the human ability to find analogical mappings between parts of different objects, where the objects to be compared were drawn either from the same category (e.g., images of two mammals, such as a dog and a horse), or from two dissimilar categories (e.g., a chair image mapped to a cat image). Humans showed systematic mapping patterns, but with greater variability in mapping responses when objects were drawn from dissimilar categories. We simulated the human response of analogical mapping using a computational model of mapping between 3D objects, visiPAM (visual Probabilistic Analogical Mapping). VisiPAM takes point-cloud representations of two 3D objects as inputs, and outputs the mapping between analogous parts of the two objects. VisiPAM consists of a visual module that constructs structural representations of individual objects, and a reasoning module that identifies a probabilistic mapping between parts of the two 3D objects. Model simulations not only capture the qualitative pattern of human mapping performance cross conditions, but also approach human-level reliability in solving visual analogy problems.
more »
« less
Not quite any way you slice it: How different analogical constructions affect Raven's Matrices performance
Analogical reasoning fundamentally involves exploiting redundancy in a given task, but there are many different ways an intelligent agent can choose to define and exploit redundancy, often resulting in very different levels of task performance. We explore such variations in analogical reasoning within the domain of geometric matrix reasoning tasks, namely on the Raven’s Standard Progressive Matrices intelligence test. We show how different analogical constructions used by the same basic visual-imagery-based computational model—varying only in how they “slice” a matrix problem into parts and do search and optimization within/across these parts—achieve very different levels of test performance, ranging from 13/60 correct all the way up to 57/60 correct. Our findings suggest that the ability to select or build effective high-level analogical constructions can be as important as an agent’s competencies in low-level reasoning skills, which raises interesting open questions about the extent to which building the “right” analogies might contribute to individual differences in human matrix reasoning performance, and how intelligent agents might learn to build or select from among different analogical constructions in the first place.
more »
« less
- Award ID(s):
- 1730044
- PAR ID:
- 10209953
- Date Published:
- Journal Name:
- Proceedings of the Eighth Annual Conference on Advances in Cognitive Systems (ACS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Design-by-analogy (DbA) is an important method for innovation that has gained much attention due to its history of leading to successful and novel design solutions. The method uses a repository of existing design solutions where designers can recognize and retrieve analogical inspirations. Yet, exploring for analogical inspiration has been a laborious task for designers. This work presents a computational methodology that is driven by a topic modeling technique called non-negative matrix factorization (NMF). NMF is widely used in the text mining field for its ability to discover topics within documents based on their semantic content. In the proposed methodology, NMF is performed iteratively to build hierarchical repositories of design solutions, with which designers can explore clusters of analogical stimuli. This methodology has been applied to a repository of mechanical design-related patents, processed to contain only component-, behavior-, or material-based content to test if unique and valuable attribute-based analogical inspiration can be discovered from the different representations of patent data. The hierarchical repositories have been visualized, and a case study has been conducted to test the effectiveness of the analogical retrieval process of the proposed methodology. Overall, this paper demonstrates that the exploration-based computational methodology may provide designers an enhanced control over design repositories to retrieve analogical inspiration for DbA practice.more » « less
-
null (Ed.)In this paper, we present the Visuospatial Reasoning Environment for Experimentation (VREE). VREE provides a simulated environment where intelligent agents interact with virtual objects while solving different visuospatial reasoning tasks. This paper shows how VREE is valuable for studying the sufficiency of visual imagery approaches for a large number of visuospatial reasoning tasks as well as how diverse strategies can be represented and studied within a single task. We present results from computational experiments using VREE on the block design task and on numerous subtests from the Leiter-R test battery on nonverbal intelligence.more » « less
-
Introduction to the problem: Systems thinking draws on complex cognitive processes. Many instructors of systems thinking and systems dynamics lack expertise in cognitively-informed pedagogy, and thus may be misunderstanding their students' struggles or missing opportunities to build their students' strengths. Approach to the work: Cognitive task analysis is the process of examining how learners process information and build understanding while completing an instructional activity. We have analyzed an assignment in which students identify a feedback loop in a reading from popular media, draw a causal loop diagram, write a narrative that describes how the loop works, and articulate the impact of the loop on the larger system within which the loop is embedded. Results: The activity exercises analogical reasoning when identifying the loop in the reading passage, causal reasoning to create the A ® B links of the diagram, facility with switching between parts and wholes at all steps of the assignment, use of external visualizations to relieve load on working memory and make essential aspects of the loop more salient, and use of sophisticated linguistic structures to convey conditionality while writing the narrative. Discussion: Our learning goal for this assignment is that students will be able to recognize, analyze, and explain feedback loops wherever they may encounter them in their personal and professional lives. Our motivation in explicating the cognitive processes required to reach this learning goal is that instructors will be better equipped to craft effective lessons, diagnose their students' difficulties, and recognize their students' cognitive accomplishments along their learning trajectory.more » « less
-
Abstract Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity—that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.more » « less
An official website of the United States government

