skip to main content


Title: Caulerpa wysorii sp. nov ., a denuded Caulerpa (Chlorophyta) resembling C. sertularioides when ‘dressed’
Routine DNA barcoding with the chloroplast gene tufA identified novel records of an unknown and denuded (i.e. lacking branchlets) Caulerpa species previously reported from the Florida Middle Grounds. tufA barcoding not only confirmed the matching molecular identity of this taxon with several newly collected denuded specimens from shallow habitats of the Yucatán shelf, but also with a set of plumose specimens previously collected from mesophotic depths of the West Florida shelf and recorded as Caulerpa sertularioides. Sequencing of two additional, faster-evolving DNA markers, i.e. nuclear ITS and the newly tested chloroplast-encoded rpoA, each confirmed conspecificity of the above morphotypes and the molecular separation of the new taxon from C. sertularioides and filiform species found in the region, namely C. cupressoides f. denudata and C. fastigiata. In light of our sequencing results and review of the early taxonomic history of filiform Caulerpa, we propose the description of Caulerpa wysorii sp. nov. for this new species that exhibits two distinct morphotypes in currently available collections, i.e. filiform or plumose assimilators. We also subsume C. tongaensis within the broadly distributed C. fastigiata, whose lectotype is also designated herein. In addition to Caulerpa wysorii sp. nov., we discovered yet another unknown denuded species from the Campeche Banks represented by a single specimen thus far.  more » « less
Award ID(s):
1754504
NSF-PAR ID:
10210136
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Phycologia
ISSN:
0031-8884
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background and Aims Cunoniaceae are woody plants with a distribution that suggests a complex history of Gondwanan vicariance, long-distance dispersal, diversification and extinction. Only four out of ~27 genera in Cunoniaceae are native to South America today, but the discovery of extinct species from Argentine Patagonia is providing new information about the history of this family in South America. Methods We describe fossil flowers collected from early Danian (early Palaeocene, ~64 Mya) deposits of the Salamanca Formation. We compare them with similar flowers from extant and extinct species using published literature and herbarium specimens. We used simultaneous analysis of morphology and available chloroplast DNA sequences (trnL–F, rbcL, matK, trnH–psbA) to determine the probable relationship of these fossils to living Cunoniaceae and the co-occurring fossil species Lacinipetalum spectabilum. Key Results Cunoniantha bicarpellata gen. et sp. nov. is the second species of Cunoniaceae to be recognized among the flowers preserved in the Salamanca Formation. Cunoniantha flowers are pentamerous and complete, the anthers contain in situ pollen, and the gynoecium is bicarpellate and syncarpous with two free styles. Phylogenetic analysis indicates that Cunoniantha belongs to crown-group Cunoniaceae among the core Cunoniaceae clade, although it does not have obvious affinity with any tribe. Lacinipetalum spectabilum, also from the Salamanca Formation, belongs to the Cunoniaceae crown group as well, but close to tribe Schizomerieae. Conclusions Our findings highlight the importance of West Gondwana in the evolution of Cunoniaceae during the early Palaeogene. The co-occurrence of C. bicarpellata and L. spectabilum, belonging to different clades within Cunoniaceae, indicates that the diversification of crown-group Cunoniaceae was under way by 64 Mya. 
    more » « less
  2. Surveys of Hawaiian macroalgae over the past 15 years have yielded numerous specimens representing species new to science. Calliblepharis yasutakei sp. nov. is here described based on a plant collected at a depth of 98 m from Kapou, Papahânaumokuâkea Marine National Monument, Hawaiʻi. Phylogenetic analyses of three molecular markers (COI, rbcL, and SSU) and analyses of morphological features were used to describe the new species in the family Cystocloniaceae. Calliblepharis yasutakei sp. nov. grouped with C. fimbriata, C. rammediorum, C. occidentalis and C. jolyi in a clade with full support for the rbcL analysis, representing a distinct lineage within the genus. Phylogenetic and vegetative morphological comparisons demonstrated that the new Hawaiian species is most closely related to C. rammediorum from Israel (rbcL similarity of 96.3%), although no female reproductive structures were found to allow a more comprehensive comparison. In order to determine whether C. yasutakei represents the first confirmed report of the genus Calliblepharis in the Hawaiian Islands, phylogenetic and morphological analysis of the Hawaiian Hypnea saidana (=Calliblepharis saidana) specimen accessioned at the Bernice P. Bishop Museum was performed. These analyses demonstrated that this specimen belongs to a new species in the genus Hypnea, which is here described as H. tsudae sp. nov. C. yasutakei, in addition to being a new species, is also reported as the first confirmed record of the genus Calliblepharis in the Hawaiian archipelago, and the description of H. tsudae brings the number of species for this genus in Hawaiʻi to eight. 
    more » « less
  3. Abstract Peltigera globulata Miadl. & Magain, a new species in the P. ponojensis/monticola species complex of section Peltigera , is formally described. This clade was previously given the interim designation Peltigera sp. 17. It is found in sun-exposed and xeric habitats at high altitudes in Peru and Ecuador. Peltigera globulata can be easily recognized by its irregularly globulated margins covered mostly by thick, white pruina, somewhat resembling the sorediate thallus margins of P. soredians , another South American species from section Peltigera . The hypervariable region of ITS1 (ITS1-HR), which is in general highly variable among species of section Peltigera , does not have diagnostic value for species identification within the P. ponojensis/monticola complex. Nevertheless, no significant level of gene flow was detected among eight lineages representing a clade of putative species (including P. globulata ) within this complex. ITS sequences from the holotype specimens of P. monticola Vitik. (collected in 1979) and P. soredians Vitik. (collected in 1981) and lectotype specimens of P. antarctica C. W. Dodge (collected in 1941) and P. aubertii C. W. Dodge (collected in 1952) were successfully obtained through Sanger and Illumina metagenomic sequencing. BLAST results of these sequences revealed that the type specimen of P. monticola falls within the P. monticola/ponojensis 7 clade, which represents P. monticola s. str., and confirmed that the type specimen of P. aubertii falls within a clade identified previously as P. aubertii based on morphology. The ITS sequence from the type specimen of P. soredians , which superficially resembles P. globulata , confirms its placement in the P. rufescens clade. Finally, we discovered that the name P. antarctica was erroneously applied to a lineage in the P. ponojensis/monticola clade. The ITS sequence from the type specimen of P. antarctica represents a lineage within the P. rufescens clade, which is sister to the P. ponojensis/monticola clade. 
    more » « less
  4. null (Ed.)
    The leafhopper tribe Platyjassini, endemic to Madagascar, is revised, largely based on specimens obtained in a recent bioinventory project led by the California Academy of Sciences. Platyjassini was previously known based on the type genus, Platyjassus Evans, 1953, and four described species. Betsileonas marmorata (Blanchard, 1840), the largest leafhopper recorded from Madagascar, presently known from a few specimens collected > 100 years ago and recently considered a genus and species incertae sedis within Cicadellidae, is newly placed in Platyjassini. Fourteen new genera and 54 new species are described and illustrated, and three new combinations are proposed. Pachyjassus gen. nov. includes three new species: Pachyjassus alatus sp. nov., Pachyjassus basifurcatus sp. nov. and Pachyjassus ranomafanensis sp. nov. Pallijassus gen. nov. is erected to include two species previously placed in Platyjassus, Pallijassus reticulatus (Evans, 1959) comb. nov. and Pallijassus stenospatulatus (Evans, 1959) comb. nov. Petalojassus gen. nov. includes one new species, Petalojassus ochrescens sp. nov. Phaiojassus gen. nov. includes seven new species: Phaiojassus acutus sp. nov., Phaiojassus bispinosus sp. nov., Phaiojassus constrictus sp. nov., Phaiojassus grandis sp. nov., Phaiojassus spatulatus sp. nov., Phaiojassus undulatus sp. nov. and Phaiojassus unispinosus sp. nov. Pictojassus gen. nov. includes three new species: Pictojassus kirindiensis sp. nov., Pictojassus productus sp. nov. and Pictojassus tulearensis sp. nov. Platyjassella gen. nov. includes six new species: Platyjassella ancora sp. nov., Platyjassella andohahelensis sp. nov., Platyjassella attenuata sp. nov., Platyjassella cormorana sp. nov., Platyjassella emarginata sp. nov. and Platyjassella immaculata sp. nov. Platyjassula gen. nov. includes four new species: Platyjassula cyclura sp. nov., Platyjassula heterofurca sp. nov., Platyjassula isofurca sp. nov. and Platyjassula mahajangensis sp. nov. In addition to the type species, Platyjassus viridis Evans, 1953, Platyjassus includes 11 new species: Platyjassus acutus sp. nov., Platyjassus asymmetricus sp. nov., Platyjassus fisheri sp. nov., Platyjassus griswoldi sp. nov., Platyjassus harinhalai sp. nov., Platyjassus irwini sp. nov., Platyjassus pedistylus sp. nov., Platyjassus pennyi sp. nov., Platyjassus pictipennis sp. nov., Platyjassus symmetricus sp. nov. and Platyjassus vestigius sp. nov. Plerujassus gen. nov. includes one new species, Plerujassus brunnescens sp. nov., in addition to Plerujassus appendiculatus (Evans, 1959) comb. nov., previously placed in Platyjassus. Plexijassus gen. nov. includes one new species, Plexijassus caliginosus sp. nov. Pseudocurtara gen. nov. includes three new species: Pseudocurtara minima sp. nov., Pseudocurtara nigripicta sp. nov. and Pseudocurtara quadrata sp. nov. Pseudocyrta gen. nov. includes one new species, Pseudocyrta hyalina sp. nov. Pseudomarganana gen. nov. includes two new species: Pseudomarganana olivacea sp. nov. and Pseudomarganana rosea sp. nov. Pulchrijassus gen. nov. includes eight new species: Pulchrijassus anjozorobensis sp. nov., Pulchrijassus eunsunae sp. nov., Pulchrijassus pallescens sp. nov., Pulchrijassus roseus sp. nov., Pulchrijassus rubrilineatus sp. nov., Pulchrijassus sindhuae sp. nov., Pulchrijassus talatakelyensis sp. nov. and Pulchrijassus toamasinensis sp. nov. Punctijassus gen. nov. includes three new species: Punctijassus circularis sp. nov., Punctijassus compressus sp. nov. and Punctijassus ivohibensis sp. nov. Illustrated keys to genera and species are provided. 
    more » « less
  5. null (Ed.)
    Small red algal morphologically variable blades have been extensively collected from Hawaiian reefs, but for many specimens their taxonomy remains poorly understood. In surveys of the Papahānaumokuākea Marine National Monument (PMNM) and Main Hawaiian Islands (MHI), we discovered two taxa of undescribed small (< 5 cm) red blades that matched the genera Psaromenia and Meredithia, based on morphology and molecular analyses. Neither genus has been previously recorded in the Hawaiian Islands, and neither group of specimens matched currently described species in these two genera. Accordingly, these specimens are described here as new species within the family Kallymeniaceae. Psaromenia laulamaula sp. nov., exclusively found at mesophotic depths (83–94 m) in PMNM, is easily distinguished from other members of the genus by its comparatively large, procarpic carpogonial branch system and solitary obovate pink-tomagenta blades. Conversely, Meredithia hawaiiensis sp. nov., occurring in both shallow (0–17 m) and mesophotic depths (55 m), has high morphological plasticity, with characters that overlap with other Meredithia species, and can only be distinguished based on DNA sequences. This study provides additional evidence of the extent of diversity in the Kallymeniaceae that is poorly characterized from mesophotic depths and provides further evidence that members of the macroalgal flora contain overlooked biodiversity. 
    more » « less