Reaction of [Ni(1,5-cod) 2 ] (30 equiv.) with PEt 3 (46 equiv.) and S 8 (1.9 equiv.) in toluene, followed by heating at 115 °C for 16 h, results in the formation of the atomically precise nanocluster (APNC), [Ni 30 S 16 (PEt 3 ) 11 ] (1), in 14% isolated yield. Complex 1 represents the largest open-shell Ni APNC yet isolated. In the solid state, 1 features a compact “metal-like” core indicative of a high degree of Ni–Ni bonding. Additionally, SQUID magnetometry suggests that 1 possesses a manifold of closely-spaced electronic states near the HOMO–LUMO gap. In situ monitoring by ESI-MS and 31 P{ 1 H} NMR spectroscopy reveal that 1 forms via the intermediacy of smaller APNCs, including [Ni 8 S 5 (PEt 3 ) 7 ] and [Ni 26 S 14 (PEt 3 ) 10 ] (2). The latter APNC was also characterized by X-ray crystallography and features a nearly identical core structure to that found in 1. This work demonstrates that large APNCs with a high degree of metal–metal bonding are isolable for nickel, and not just the noble metals. 
                        more » 
                        « less   
                    
                            
                            Electronic relaxation dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) thiolate-protected nanoclusters
                        
                    
    
            We investigate the excited electron dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) [MPA = mercaptopropanoic acid, PET = phenylethylthiol] nanoparticles to understand how different ligands affect the excited state dynamics in this system. The population dynamics of the core and higher excited states lying in the energy range 0.00–2.20 eV are studied using a surface hopping method with decoherence correction in a real-time DFT approach. All of the ligated clusters follow a similar trend in decay for the core states (S 1 –S 6 ). The observed time constants are on the picosecond time scale (2–19 ps), which agrees with the experimental time scale, and this study confirms that the time constants observed experimentally could originate from core-to-core transitions and not from core-to-semiring transitions. In the presence of higher excited states, R = H, CH 3 , C 2 H 5 , C 3 H 7 , and PET demonstrate similar relaxations trends whereas R = MPA shows slightly different relaxation of the core states due to a smaller gap between the LUMO+1 and LUMO+2 gap in its electronic structure. The S 1 (HOMO → LUMO) state gives the slowest decay in all ligated clusters, while S 7 has a relatively long decay. Furthermore, separate electron and hole relaxations were performed on the [Au 25 (SCH 3 ) 18 ] −1 nanocluster to understand how independent electron and hole relaxations contribute to the overall relaxation dynamics. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10210388
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 9
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 5272 to 5285
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.more » « less
- 
            The synthesis and characterization of an Au 20 (PET) 15 (DG) 2 (PET = phenylethane thiol; DG = diglyme) cluster is reported. Mass spectrometry reveals this as the first diglyme ligated cluster where diglyme ligands survive ionization into the gas phase. Thermal analysis shows the cluster degrades at 156 °C, whereas the similar Au 20 (PET) 16 cluster degrades at 125 °C, representing markedly increased thermal stability. A combination of NMR spectroscopy and computational modeling suggests that the diglyme molecules bind in a tridentate manner for this cluster, resulting in a binding energy of 35.2 kcal mol −1 for diglyme, which is comparable to the value of ∼40 kcal mol −1 for thiolates. IR and optical spectroscopies show no evidence of assembly of this cluster, in contrast to Au 20 (PET) 15 (DG), which readily assembles into dimeric species, which is consistent with a tridentate binding motif. Evidence for stacking among Au-bound and non-bound diglyme molecules is inferred from thermal and mass analysis.more » « less
- 
            Abstract Addition of sub‐stoichiometric quantities of PEt3and diphenyl disulfide to a solution of [Ni(1,5‐cod)2] generates a mixture of [Ni3(SPh)4(PEt3)3] (1), unreacted [Ni(1,5‐cod)2], and [(1,5‐cod)Ni(PEt3)2], according to1H and31P{1H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex1converts into [Ni4(S)(Ph)(SPh)3(PEt3)3] (2), via formal addition of a “Ni(0)” equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni‐bound phenyl ligand and the μ3‐sulfide ligand. Upon gentle heating, complex2converts into a mixture of [Ni5(S)2(SPh)2(PEt3)5] (3) and [Ni8(S)5(PEt3)7] (4), via further addition of “Ni(0)” equivalents, in combination with a series of C–S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of1–4in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster.more » « less
- 
            The RSSH + H 2 S → RSH + HSSH reaction has been suggested by numerous labs to be important in H 2 S-mediated biological processes. Seven different mechanisms for this reaction (R = CH 3 , as a model) have been studied using the DFT methods (M06-2X and ωB97X-D) with the Dunning aug-cc-pV(T+d)Z basis sets. The reaction of CH 3 SSH with gas phase H 2 S has a very high energy barrier (>45 kcal mol −1 ), consistent with the available experimental observations. A series of substitution reactions R 1 –S–S–H + − S–R 2 (R 1 = Me, t Bu, Ad, R 2 = H, S–Me, S– t Bu, S–Ad) have been studied. The regioselectivity is largely affected by the steric bulkiness of R 1 , but is much less sensitive to R 2 . Thus, when R 1 is Me, all − S–R 2 favorably attack the internal S atom, leading to R 1 –S–S–R 2 . While for R 1 = t Bu, Ad, all − S–R 2 significantly prefer to attack the external S atom to form − S–S–R 2 . These results are in good agreement with the experimental observations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    