skip to main content

Title: Electronic relaxation dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) thiolate-protected nanoclusters
We investigate the excited electron dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) [MPA = mercaptopropanoic acid, PET = phenylethylthiol] nanoparticles to understand how different ligands affect the excited state dynamics in this system. The population dynamics of the core and higher excited states lying in the energy range 0.00–2.20 eV are studied using a surface hopping method with decoherence correction in a real-time DFT approach. All of the ligated clusters follow a similar trend in decay for the core states (S 1 –S 6 ). The observed time constants are on the picosecond time scale (2–19 ps), which agrees with the experimental time scale, and this study confirms that the time constants observed experimentally could originate from core-to-core transitions and not from core-to-semiring transitions. In the presence of higher excited states, R = H, CH 3 , C 2 H 5 , C 3 H 7 , and PET demonstrate similar relaxations trends whereas R = MPA shows slightly different relaxation of the core states due to a smaller gap between the LUMO+1 and LUMO+2 gap in its electronic structure. The S more » 1 (HOMO → LUMO) state gives the slowest decay in all ligated clusters, while S 7 has a relatively long decay. Furthermore, separate electron and hole relaxations were performed on the [Au 25 (SCH 3 ) 18 ] −1 nanocluster to understand how independent electron and hole relaxations contribute to the overall relaxation dynamics. « less
Award ID(s):
1726332 1507909
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Page Range or eLocation-ID:
5272 to 5285
Sponsoring Org:
National Science Foundation
More Like this
  1. Reaction of [Ni(1,5-cod) 2 ] (30 equiv.) with PEt 3 (46 equiv.) and S 8 (1.9 equiv.) in toluene, followed by heating at 115 °C for 16 h, results in the formation of the atomically precise nanocluster (APNC), [Ni 30 S 16 (PEt 3 ) 11 ] (1), in 14% isolated yield. Complex 1 represents the largest open-shell Ni APNC yet isolated. In the solid state, 1 features a compact “metal-like” core indicative of a high degree of Ni–Ni bonding. Additionally, SQUID magnetometry suggests that 1 possesses a manifold of closely-spaced electronic states near the HOMO–LUMO gap. In situ monitoringmore »by ESI-MS and 31 P{ 1 H} NMR spectroscopy reveal that 1 forms via the intermediacy of smaller APNCs, including [Ni 8 S 5 (PEt 3 ) 7 ] and [Ni 26 S 14 (PEt 3 ) 10 ] (2). The latter APNC was also characterized by X-ray crystallography and features a nearly identical core structure to that found in 1. This work demonstrates that large APNCs with a high degree of metal–metal bonding are isolable for nickel, and not just the noble metals.« less
  2. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni(more »ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.« less
  3. We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and productmore »channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.« less
  4. The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me 6 tren) 2 MII2(C 6 H 4 O 2 2− )] 2+ (Me 6 tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me 6 tren) 2 MII2(C 6 H 4 O 2 − ˙)] 3+ .more »Single-crystal X-ray diffraction shows that the Me 6 tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p -benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel( ii ) complex exhibits a substantial J < −600 cm −1 , resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm −1 , respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of U eff = 22 and 46 cm −1 , respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear Ni II complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation.« less
  5. Abstract. Triplet excited states of organic matter are formed when colored organicmatter (i.e., brown carbon) absorbs light. While these “triplets” can beimportant photooxidants in atmospheric drops and particles (e.g., theyrapidly oxidize phenols), very little is known about their reactivity towardmany classes of organic compounds in the atmosphere. Here we measure thebimolecular rate constants of the triplet excited state of benzophenone(3BP), a model species, with 17 water-solubleC3C6 alkenes that have either been found in theatmosphere or are reasonable surrogates for identified species. Measured rateconstants (kALK+3BPmore »md5hash="5e244a6573dc648a8ae694306cb94c30">) vary by a factor of 30 and are in therange of (0.24–7.5)&thinsp;×109&thinsp;M−1&thinsp;s−1. Biogenic alkenesfound in the atmosphere – e.g., cis-3-hexen-1-ol, cis-3-hexenyl acetate, andmethyl jasmonate – react rapidly, with rate constants above 1×109&thinsp;M−1&thinsp;s−1. Rate constants depend on alkene characteristicssuch as the location of the double bond, stereochemistry, and alkylsubstitution on the double bond. There is a reasonable correlation betweenkALK+3BP and the calculated one-electron oxidation potential(OP) of the alkenes (R2=0.58); in contrast, rate constants are notcorrelated with bond dissociation enthalpies, bond dissociation freeenergies, or computed energy barriers for hydrogen abstraction. Using the OPrelationship, we estimate aqueous rate constants for a number of unsaturatedisoprene and limonene oxidation products with 3BP: values are inthe range of (0.080–1.7)&thinsp;×109&thinsp;M−1&thinsp;s−1, withgenerally faster values for limonene products. Rate constants with lessreactive triplets, which are probably more environmentally relevant, arelikely roughly 25 times slower. Using our predicted rate constants, alongwith values for other reactions from the literature, we conclude thattriplets are probably minor oxidants for isoprene- and limonene-relatedcompounds in cloudy or foggy atmospheres, except in cases in which the tripletsare very reactive.

    « less