skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Can Prediction of Turn-management Willingness Improve Turn-changing Modeling?
Award ID(s):
1750439
NSF-PAR ID:
10210587
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents (IVA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a transportation network, a source node s, a destination node t , and the number of maximum possible turnings b , the Turn-Constrained Shortest Path (TCSP) problem is to find the route that minimizes the travel distance and meets the turn-constraint. The TCSP problem is important for societal applications such as shipping and logistics, emergency route planning, and traffic management services. We propose novel approaches for TCSP to meet the turn-constraint while minimizing the travel distance for the vehicle route. Experiments using real-world datasets demonstrated that the proposed algorithms can minimize the travel distance and meet the turn-constraint; furthermore, it has comparable solution quality to the unconstrained shortest path and significantly reduces the computational cost. 
    more » « less
  2. This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This paradigm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data reuse across kernels compared to the baseline software-managed GPU coherence implementation while also providing write atomicity and avoiding the need for software inserted acquire-release operations. 1 
    more » « less
  3. Abstract

    Asexual reproduction is ancestral in prokaryotes; the switch to sexuality in eukaryotes is one of the major transitions in the history of life. The study of the maintenance of sex in eukaryotes has raised considerable interest for decades and is still one of evolutionary biology’s most prominent question. The observation that many asexual species are of hybrid origin has led some to propose that asexuality in hybrids results from sexual processes being disturbed because of incompatibilities between the two parental species’ genomes. However, in some cases, failure to produce asexual F1s in the lab may indicate that this mechanism is not the only road to asexuality in hybrid species. Here, we present a mathematical model and propose an alternative, adaptive route for the evolution of asexuality from previously sexual hybrids. Under some reproductive alterations, we show that asexuality can evolve to rescue hybrids’ reproduction. Importantly, we highlight that when incompatibilities only affect the fusion of sperm and egg’s genomes, the two traits that characterize asexuality, namely unreduced meiosis and the initiation of embryogenesis without the incorporation of the sperm’s pronucleus, can evolve separately, greatly facilitating the overall evolutionary route. Taken together, our results provide an alternative, potentially complementary explanation for the link between asexuality and hybridization.

     
    more » « less