skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building Reusable Repertoires for Stochastic Self-* Planners
Plan reuse is a promising approach for enabling self-* systems to effectively adapt to unexpected changes, such as evolving existing adaptation strategies after an unexpected change using stochastic search. An ideal self-* planner should be able to reuse repertoires of adaptation strategies, but this is challenging due to the evaluation overhead. For effective reuse, a repertoire should be both (a) likely to generalize to future situations, and (b) cost effective to evaluate. In this work, we present an approach inspired by chaos engineering for generating a diverse set of adaptation strategies to reuse, and we explore two analysis approaches based on clone detection and syntactic transformation for constructing repertoires of adaptation strategies that are likely to be amenable to reuse in stochastic search self-* planners. An evaluation of the proposed approaches on a simulated system inspired by Amazon Web Services shows planning effectiveness improved by up to 20% and reveals tradeoffs in planning timeliness and optimality.  more » « less
Award ID(s):
1750116
PAR ID:
10210654
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)
Page Range / eLocation ID:
222-231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate oscillations ranging from years to decades drive precipitation variability in many river basins globally. As a result, many regions will require new water infrastructure investments to maintain reliable water supply. However, current adaptation approaches focus on long-term trends, preparing for average climate conditions at mid- or end-of-century. The impact of climate oscillations, which bring prolonged and variable but temporary dry periods, on water supply augmentation needs is unknown. Current approaches for theory development in nature-society systems are limited in their ability to realistically capture the impacts of climate oscillations on water supply. Here, we develop an approach to build middle-range theory on how common climate oscillations affect low-cost, reliable water supply augmentation strategies. We extract contrasting climate oscillation patterns across sub-Saharan Africa and study their impacts on a generic water supply system. Our approach integrates climate model projections, nonstationary signal processing, stochastic weather generation, and reinforcement learning–based advances in stochastic dynamic control. We find that longer climate oscillations often require greater water supply augmentation capacity but benefit more from dynamic approaches. Therefore, in settings with the adaptive capacity to revisit planning decisions frequently, longer climate oscillations do not require greater capacity. By building theory on the relationship between climate oscillations and least-cost reliable water supply augmentation, our findings can help planners target scarce resources and guide water technology and policy innovation. This approach can be used to support climate adaptation planning across large spatial scales in sectors impacted by climate variability. 
    more » « less
  2. Nature-based tourism attractiveness (NBTA) has yet to be assessed by coupling empirical measurement of supply and demand indicators with simultaneous assessment of tourist and tourism expert perspectives. Based on a guiding principle that the overall attractiveness of a tourism destination should combine the evaluation of existing resources or attractions and their perceived attractiveness, the purpose of this study is to develop and apply a novel methodological approach for assessing tourism attractiveness of nature-based destinations. This approach developed here combines an Analytic Hierarchy Process (AHP) with a Fuzzy Comprehensive Evaluation Method (FCEM). The resulting Fuzzy-AHP approach to NBTA was tested at the Changbai Mountain Biosphere Reserve, a popular nature-based tourism destination in China. The findings confirm that this Fuzzy-AHP approach is a more reliable and comprehensive method for evaluating the destination attractiveness than pre-existing approaches. In addition to theoretical contributions related to the merging of various approaches to assessing destination attractiveness and the development of a tool specific to nature-based tourism destinations, this work will be of interest to decision makers seeking more effective tools for planning, marketing, and developing nature-based tourism destinations. 
    more » « less
  3. This paper investigates online stochastic planning for problems with large factored state and action spaces. One promising approach in recent work estimates the quality of applicable actions in the current state through aggregate simulation from the states they reach. This leads to significant speedup, compared to search over concrete states and actions, and suffices to guide decision making in cases where the performance of a random policy is informative of the quality of a state. The paper makes two significant improvements to this approach. The first, taking inspiration from lifted belief propagation, exploits the structure of the problem to derive a more compact computation graph for aggregate simulation. The second improvement replaces the random policy embedded in the computation graph with symbolic variables that are optimized simultaneously with the search for high quality actions. This expands the scope of the approach to problems that require deep search and where information is lost quickly with random steps. An empirical evaluation shows that these ideas significantly improve performance, leading to state of the art performance on hard planning problems. 
    more » « less
  4. Picking an item in the presence of other objects can be challenging as it involves occlusions and partial views. Given object models, one approach is to perform object pose estimation and use the most likely candidate pose per object to pick the target without collisions. This approach, however, ignores the uncertainty of the perception process both regarding the target’s and the surrounding objects’ poses. This work proposes first a perception process for 6D pose estimation, which returns a discrete distribution of object poses in a scene. Then, an open-loop planning pipeline is proposed to return safe and effective solutions for moving a robotic arm to pick, which (a) minimizes the probability of collision with the obstructing objects; and (b) maximizes the probability of reaching the target item. The planning framework models the challenge as a stochastic variant of the Minimum Constraint Removal (MCR) problem. The effectiveness of the methodology is verified given both simulated and real data in different scenarios. The experiments demonstrate the importance of considering the uncertainty of the perception process in terms of safe execution. The results also show that the methodology is more effective than conservative MCR approaches, which avoid all possible object poses regardless of the reported uncertainty. 
    more » « less
  5. Scheideler, Christian (Ed.)
    The foraging problem asks how a collective of particles with limited computational, communication and movement capabilities can autonomously compress around a food source and disperse when the food is depleted or shifted, which may occur at arbitrary times. We would like the particles to iteratively self-organize, using only local interactions, to correctly gather whenever a food particle remains in a position long enough and search if no food particle has existed recently. Unlike previous approaches, these search and gather phases should be self-induced so as to be indefinitely repeatable as the food evolves, with microscopic changes to the food triggering macroscopic, system-wide phase transitions. We present a stochastic foraging algorithm based on a phase change in the fixed magnetization Ising model from statistical physics: Our algorithm is the first to leverage self-induced phase changes as an algorithmic tool. A key component of our algorithm is a careful token passing mechanism ensuring a dispersion broadcast wave will always outpace a compression wave. 
    more » « less