skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classification of Adolescent Major Depressive Disorder via Static and Dynamic Connectivity
Prior papers have explored the functional connectivity changes for patients suffering from major depressive disorder (MDD). This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments. This paper investigates various static and dynamic connectivity measures extracted from resting-state fMRI for assisting with MDD diagnosis. First, absolute Pearson correlation matrices from 85 brain regions are computed and they are used to calculate static features for predicting MDD. A predictive sub-network extracted using sub-graph entropy classifies adolescent MDD vs. typical healthy controls with high accuracy, sensitivity and specificity. Next, approaches utilizing dynamic connectivity are employed to extract tensor based, independent component based and principal component based subject specific attributes. Finally, features from static and dynamic approaches are combined to create a feature vector for classification. A leave-one-out cross-validation method is used for the final predictor performance. Out of 49 adolescents with MDD and 33 matched healthy controls, a support vector machine (SVM) classifier using a radial basis function (RBF) kernel using differential sub-graph entropy combined with dynamic connectivity features classifies MDD vs. healthy controls with an accuracy of 0.82 for leave-one-out cross-validation. This classifier has specificity and sensitivity of 0.79 and 0.84, respectively. This performance demonstrates the utility of MRI based diagnosis of psychiatric disorders like MDD using a combination of static and dynamic functional connectivity features of the brain.  more » « less
Award ID(s):
1954749
PAR ID:
10210735
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Journal of Biomedical and Health Informatics
ISSN:
2168-2194
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter‐network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 SZ patients and 160 demographically matched healthy controls (HC). Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available functional brain networks between SZ patients and HC. These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN), and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time‐varying connectivity strength across functional regions from each source network, compared to HC. C‐means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low‐scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large‐scale functional entropy correlation. K‐means clustering analysis on time‐indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that in HC, the brain primarily communicates through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. Individuals with SZ are significantly less likely to attain these more focused and structured transient connectivity patterns. The proposed ICE measure presents a novel framework for gaining deeper insight into mechanisms of healthy and diseased brain states and represents a useful step forward in developing advanced methods to help diagnose mental health conditions. 
    more » « less
  2. Large‐scale analysis of functional connectivity within intrinsic brain networks using functional magnetic resonance imaging (fMRI) data has been widely used for identifying biomarkers in various psychiatric disorders. While the emerging access to large neuroimaging datasets provides unprecedented opportunities for exploring brain functions, they also pose significant computational complexity challenges due to the large amount of inherent variability across individuals and the complexity of brain activity patterns. To address these challenges, this paper introduces two novel constrained ICA methods, arc‐EBM and minc‐EBM, designed to overcome the computational complexity issue by incorporating prior information into the analysis framework. The proposed methods preserve the subject variability by adaptively selecting the constrained parameters for different functional networks and individuals, while also allowing estimation flexibility for activities not covered by the prior information through the concept of free components. Our methods are shown to enhance the precision of functional network estimation and improve the capture of subject variability across different cohorts. We evaluate the proposed methods using both synthetic and real fMRI data. By applying the proposed methods to a resting‐state fMRI dataset including 179 subjects, both algorithms successfully reveal significant group differences in functional network connectivity between healthy controls and schizophrenia patients. The observed group differences, particularly the abnormal connectivity alterations in networks involving the thalamus, subthalamus/hypothalamus, and superior temporal gyrus, align with findings from previous clinical studies. Furthermore, our results demonstrate that the constraint parameters adaptively selected by arc‐EBM reveal more diverse resting‐state network structures in individuals with schizophrenia compared with healthy controls. This finding is consistent with prior studies and suggests that the selected constraint parameters could serve as potential biomarkers for mental disorder diagnosis. 
    more » « less
  3. The goal of this paper is to use graph theory network measures derived from non-invasive electroencephalography (EEG) to develop neural decoders that can differentiate Parkinson's disease (PD) patients from healthy controls (HC). EEG signals from 27 patients and 27 demographically matched controls from New Mexico were analyzed by estimating their functional networks. Data recorded from the patients during ON and OFF levodopa sessions were included in the analysis for comparison. We used betweenness centrality of estimated functional networks to classify the HC and PD groups. The classifiers were evaluated using leave-one-out cross-validation. We observed that the PD patients (on and off medication) could be distinguished from healthy controls with 89% accuracy – approximately 4% higher than the state-of-the-art on the same dataset. This work shows that brain network analysis using extracranial resting-state EEG can discover patterns of interactions indicative of PD. This approach can also be extended to other neurological disorders. 
    more » « less
  4. Resting-state functional magnetic resonance imaging (rsfMRI) has become a widely used approach for detecting subtle differences in functional brain fluctuations in various studies of the healthy and disordered brain. Such studies are often based on temporal functional connectivity (i.e., the correlation between time courses derived from regions or networks within the fMRI data). While being successful for a number of tasks, temporal connectivity does not fully leverage the available spatial information. In this research study, we present a new perspective on spatial functional connectivity, which involves learning patterns of spatial coupling among brain networks by utilizing recent advances in deep learning as well as the contrastive learning framework. We show that we can learn domain-specific mappings of brain networks that can, in turn, be used to characterize differences between schizophrenia patients and control. Furthermore, we show that the coupling of intradomain networks in the controls is stronger than in patients suffering from the disorder. We also evaluate the coupling among networks of different domains and find various patterns of stronger or weaker coupling among certain domains, which provide additional insights about the brain. 
    more » « less
  5. Abstract There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity. 
    more » « less