skip to main content


Title: Classification of Adolescent Major Depressive Disorder via Static and Dynamic Connectivity
Prior papers have explored the functional connectivity changes for patients suffering from major depressive disorder (MDD). This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments. This paper investigates various static and dynamic connectivity measures extracted from resting-state fMRI for assisting with MDD diagnosis. First, absolute Pearson correlation matrices from 85 brain regions are computed and they are used to calculate static features for predicting MDD. A predictive sub-network extracted using sub-graph entropy classifies adolescent MDD vs. typical healthy controls with high accuracy, sensitivity and specificity. Next, approaches utilizing dynamic connectivity are employed to extract tensor based, independent component based and principal component based subject specific attributes. Finally, features from static and dynamic approaches are combined to create a feature vector for classification. A leave-one-out cross-validation method is used for the final predictor performance. Out of 49 adolescents with MDD and 33 matched healthy controls, a support vector machine (SVM) classifier using a radial basis function (RBF) kernel using differential sub-graph entropy combined with dynamic connectivity features classifies MDD vs. healthy controls with an accuracy of 0.82 for leave-one-out cross-validation. This classifier has specificity and sensitivity of 0.79 and 0.84, respectively. This performance demonstrates the utility of MRI based diagnosis of psychiatric disorders like MDD using a combination of static and dynamic functional connectivity features of the brain.  more » « less
Award ID(s):
1954749
NSF-PAR ID:
10210735
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Journal of Biomedical and Health Informatics
ISSN:
2168-2194
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of symptomatically‐related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent component analysis procedure to estimate both group‐level and subject‐specific connectivity states from DFC. Using resting‐state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ patients, we identified measures differentiating groups from the whole‐brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis‐related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post‐central, frontal, and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD‐unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis.Hum Brain Mapp 38:2683–2708, 2017. ©2017 Wiley Periodicals, Inc.

     
    more » « less
  2. Abstract

    The validity and reliability of diagnoses in psychiatry is a challenging topic in mental health. The current mental health categorization is based primarily on symptoms and clinical course and is not biologically validated. Among multiple ongoing efforts, neurological observations alongside clinical evaluations are considered to be potential solutions to address diagnostic problems. The Bipolar‐Schizophrenia Network on Intermediate Phenotypes (B‐SNIP) has published multiple papers attempting to reclassify psychotic illnesses based on biological rather than symptomatic measures. However, the effort to investigate the relationship between this new categorization approach and other neuroimaging techniques, including resting‐state fMRI data, is still limited. This study focused on investigating the relationship between different psychotic disorders categorization methods and resting‐state fMRI‐based measures called dynamic functional network connectivity (dFNC) using state‐of‐the‐art artificial intelligence (AI) approaches. We applied our method to 613 subjects, including individuals with psychosis and healthy controls, which were classified using both the Diagnostic and Statistical Manual of Mental Disorders (DSM‐IV) and the B‐SNIP biomarker‐based (Biotype) approach. Statistical group differences and cross‐validated classifiers were performed within each framework to assess how different categories. Results highlight interesting differences in occupancy in both DSM‐IV and Biotype categorizations compared to healthy individuals, which are distributed across specific transient connectivity states. Biotypes tended to show less distinctiveness in occupancy level and included fewer cellwise differences. Classification accuracy obtained by DSM‐IV and Biotype categories were both well above chance. Results provided new insights and highlighted the benefits of both DSM‐IV and biology‐based categories while also emphasizing the importance of future work in this direction, including employing further data types.

     
    more » « less
  3. Objective: Inferring causal or effective connectivity between measured timeseries is crucial to understanding directed interactions in complex systems. This task is especially challenging in the brain as the underlying dynamics are not well-understood. This paper aims to introduce a novel causality measure called frequency-domain convergent cross-mapping (FDCCM) that utilizes frequency-domain dynamics through nonlinear state-space reconstruction. Method: Using synthesized chaotic timeseries, we investigate general applicability of FDCCM at different causal strengths and noise levels. We also apply our method on two resting-state Parkinson's datasets with 31 and 54 subjects, respectively. To this end, we construct causal networks, extract network features, and perform machine learning analysis to distinguish Parkinson's disease patients (PD) from age and gender-matched healthy controls (HC). Specifically, we use the FDCCM networks to compute the betweenness centrality of the network nodes, which act as features for the classification models. Result: The analysis on simulated data showed that FDCCM is resilient to additive Gaussian noise, making it suitable for real-world applications. Our proposed method also decodes scalp-EEG signals to classify the PD and HC groups with approximately 97% leave-one-subject-out cross-validation accuracy. We compared decoders from six cortical regions to find that features derived from the left temporal lobe lead to a higher classification accuracy of 84.5% compared to other regions. Moreover, when the classifier trained using FDCCM networks from one dataset was tested on an independent out-of-sample dataset, it attained an accuracy of 84%. This accuracy is significantly higher than correlational networks (45.2%) and CCM networks (54.84%). Significance: These findings suggest that our spectral-based causality measure can improve classification performance and reveal useful network biomarkers of Parkinson's disease. 
    more » « less
  4. Resting-state functional magnetic resonance imaging (rsfMRI) has become a widely used approach for detecting subtle differences in functional brain fluctuations in various studies of the healthy and disordered brain. Such studies are often based on temporal functional connectivity (i.e., the correlation between time courses derived from regions or networks within the fMRI data). While being successful for a number of tasks, temporal connectivity does not fully leverage the available spatial information. In this research study, we present a new perspective on spatial functional connectivity, which involves learning patterns of spatial coupling among brain networks by utilizing recent advances in deep learning as well as the contrastive learning framework. We show that we can learn domain-specific mappings of brain networks that can, in turn, be used to characterize differences between schizophrenia patients and control. Furthermore, we show that the coupling of intradomain networks in the controls is stronger than in patients suffering from the disorder. We also evaluate the coupling among networks of different domains and find various patterns of stronger or weaker coupling among certain domains, which provide additional insights about the brain. 
    more » « less
  5. Abstract

    There is ample evidence of atypical functional connectivity (FC) in autism spectrum disorders (ASDs). However, transient relationships between neural networks cannot be captured by conventional static FC analyses. Dynamic FC (dFC) approaches have been used to identify repeating, transient connectivity patterns (“states”), revealing spatiotemporal network properties not observable in static FC. Recent studies have found atypical dFC in ASDs, but questions remain about the nature of group differences in transient connectivity, and the degree to which states persist or change over time. This study aimed to: (a) describe and relate static and dynamic FC in typical development and ASDs, (b) describe group differences in transient states and compare them with static FC patterns, and (c) examine temporal stability and flexibility between identified states. Resting‐state functional magnetic resonance imaging (fMRI) data were collected from 62 ASD and 57 typically developing (TD) children and adolescents. Whole‐brain, data‐driven regions of interest were derived from group independent component analysis. Sliding window analysis and k‐means clustering were used to explore dFC and identify transient states. Across all regions, static overconnnectivity and increased variability over time in ASDs predominated. Furthermore, significant patterns of group differences emerged in two transient states that were not observed in the static FC matrix, with group differences in one state primarily involving sensory and motor networks, and in the other involving higher‐order cognition networks. Default mode network segregation was significantly reduced in ASDs in both states. Results highlight that dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.

     
    more » « less