skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semicentralized Deep Deterministic Policy Gradient in Cooperative StarCraft Games
In this article, we propose a novel semicentralized deep deterministic policy gradient (SCDDPG) algorithm for cooperative multiagent games. Specifically, we design a two-level actor-critic structure to help the agents with interactions and cooperation in the StarCraft combat. The local actor-critic structure is established for each kind of agents with partially observable information received from the environment. Then, the global actor-critic structure is built to provide the local design an overall view of the combat based on the limited centralized information, such as the health value. These two structures work together to generate the optimal control action for each agent and to achieve better cooperation in the games. Comparing with the fully centralized methods, this design can reduce the communication burden by only sending limited information to the global level during the learning process. Furthermore, the reward functions are also designed for both local and global structures based on the agents' attributes to further improve the learning performance in the stochastic environment. The developed method has been demonstrated on several scenarios in a real-time strategy game, i.e., StarCraft. The simulation results show that the agents can effectively cooperate with their teammates and defeat the enemies in various StarCraft scenarios.  more » « less
Award ID(s):
1947418 1947419
PAR ID:
10210959
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Neural Networks and Learning Systems
ISSN:
2162-237X
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes an intelligent multi-agent approach in a real-time strategy game, StarCraft, based on the deep deterministic policy gradients (DDPG) techniques. An actor and a critic network are established to estimate the optimal control actions and corresponding value functions, respectively. A special reward function is designed based on the agents' own condition and enemies' information to help agents make intelligent control in the game. Furthermore, in order to accelerate the learning process, the transfer learning techniques are integrated into the training process. Specifically, the agents are trained initially in a simple task to learn the basic concept for the combat, such as detouring moving, avoiding and joining attacking. Then, we transfer this experience to the target task with a complex and difficult scenario. From the experiment, it is shown that our proposed algorithm with transfer learning can achieve better performance. 
    more » « less
  2. Federated reinforcement learning (FRL) has emerged as a promising paradigm, enabling multiple agents to collaborate and learn a shared policy adaptable across heterogeneous environments. Among the various reinforcement learning (RL) algorithms, the actor-critic (AC) algorithm stands out for its low variance and high sample efficiency. However, little to nothing is known theoretically about AC in a federated manner, especially each agent interacts with a potentially different environment. The lack of such results is attributed to various technical challenges: a two-level structure illustrating the coupling effect between the actor and the critic, heterogeneous environments, Markovian sampling and multiple local updates. In response, we study Single-Loop Federated Actor Critic (SFAC) where agents perform AC learning in a two-level federated manner while interacting with heterogeneous environments. We then provide bounds on the convergence error of SFAC. The results show that the convergence error asymptotically converges to a near-stationary point, with the extent proportional to environment heterogeneity. Moreover, the sample complexity exhibits a linear speed-up through the federation of agents. We evaluate the performance of SFAC through numerical experiments using common RL benchmarks, which demonstrate its effectiveness. 
    more » « less
  3. Policy gradient methods have become popular in multi-agent reinforcement learning, but they suffer from high variance due to the presence of environmental stochasticity and exploring agents (i.e., non-stationarity), which is potentially worsened by the difficulty in credit assignment. As a result, there is a need for a method that is not only capable of efficiently solving the above two problems but also robust enough to solve a variety of tasks. To this end, we propose a new multi-agent policy gradient method, called Robust Local Advantage (ROLA) Actor-Critic. ROLA allows each agent to learn an individual action-value function as a local critic as well as ameliorating environment non-stationarity via a novel centralized training approach based on a centralized critic. By using this local critic, each agent calculates a baseline to reduce variance on its policy gradient estimation, which results in an expected advantage action-value over other agents’ choices that implicitly improves credit assignment. We evaluate ROLA across diverse benchmarks and show its robustness and effectiveness over a number of state-of-the-art multi-agent policy gradient algorithms. 
    more » « less
  4. The exploitation of extra state information has been an active research area in multi-agent reinforcement learning (MARL). QMIX represents the joint action-value using a non-negative function approximator and achieves the best performance on the StarCraft II micromanagement testbed, a common MARL benchmark. However, our experiments demonstrate that, in some cases, QMIX performs sub-optimally with the A2C framework, a training paradigm that promotes algorithm training efficiency. To obtain a reasonable trade-off between training efficiency and algorithm performance, we extend value-decomposition to actor-critic methods that are compatible with A2C and propose a novel actor-critic framework, value-decomposition actor-critic (VDAC). We evaluate VDAC on the StarCraft II micromanagement task and demonstrate that the proposed framework improves median performance over other actor-critic methods. Furthermore, we use a set of ablation experiments to identify the key factors that contribute to the performance of VDAC. 
    more » « less
  5. The exploitation of extra state information has been an active research area in multi-agent reinforcement learning (MARL). QMIX represents the joint action-value using a non-negative function approximator and achieves the best performance on the StarCraft II micromanagement testbed, a common MARL benchmark. However, our experiments demonstrate that, in some cases, QMIX performs sub-optimally with the A2C framework, a training paradigm that promotes algorithm training efficiency. To obtain a reasonable trade-off between training efficiency and algorithm performance, we extend value-decomposition to actor-critic methods that are compatible with A2C and propose a novel actor-critic framework, value-decomposition actor-critic (VDAC). We evaluate VDAC on the StarCraft II micromanagement task and demonstrate that the proposed framework improves median performance over other actor-critic methods. Furthermore, we use a set of ablation experiments to identify the key factors that contribute to the performance of VDAC. 
    more » « less