skip to main content


Title: A Review of Modern Communication Technologies for Digital Manufacturing Processes in Industry 4.0
Abstract Digital manufacturing technologies have quickly become ubiquitous in the manufacturing industry. The transformation commonly referred to as the fourth industrial revolution, or Industry 4.0, has ushered in a wide range of communication technologies, connection mechanisms, and data analysis capabilities. These technologies provide powerful tools to create more lean, profitable, and data-driven manufacturing processes. This paper reviews modern communication technologies and connection architectures for Digital Manufacturing and Industry 4.0 applications. An introduction to cyber-physical systems and a review of digital manufacturing trends is followed by an overview of data acquisition methods for manufacturing processes. Numerous communication protocols are presented and discussed for connecting disparate machines and processes. Flexible data architectures are discussed, and examples of machine monitoring implementations are provided. Finally, select implementations of these communication protocols and architectures are surveyed with recommendations for future architecture implementations.  more » « less
Award ID(s):
1631803 1646013
NSF-PAR ID:
10211060
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
142
Issue:
11
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper (Wu 2016), which was published in AI EDAM online on August 22, 2016, has been retracted by Cambridge University Press as it is very similar in content to a published ASME Conference Proceedings paper. The article in question and the ASME Conference Proceedings paper were submitted for review with AI EDAM and the ASME at similar times, but copyright was assigned to ASME before the paper was accepted in AI EDAM and therefore the article in AI EDAM is being retracted. (In recent years, industrial nations around the globe have invested heavily in new technologies, software, and services to advance digital design and manufacturing using cyber-physical systems, data analytics, and high-performance computing. Many of these initiatives, such as cloud-based design and manufacturing, fall under the umbrella of what has become known as Industry 4.0 or Industrial Internet and are often hailed as pillars of a new industrial revolution. While an increasing number of companies are developing or already offer commercial cloud-based software packages and services for digital design and manufacturing, little work has been reported on providing a review of the state of the art of these commercial software and services as well as identifying research gaps in this field. The objective of this paper is to present a state-of-the-art review of digital design and manufacturing software and services that are currently available on the cloud. The focus of this paper is on assessing to what extent engineering design, engineering analysis, manufacturing, and production across all phases of the product development lifecycles can already be performed based on the software and services accessed through the cloud. In addition, the key capabilities and benefits of these software packages and services are discussed. Based on the assessment of the core features of commercial software and services, it can be concluded that almost all phases of product realization can be conducted through digital design and manufacturing software and services on the cloud. Finally, existing research gaps and related challenges to overcome are identified. The state-of-the-art review serves to provide a technology guide for decision makers in their efforts to select suitable cloud-based software and services as alternatives to existing in-house resources as well as to recommend new research areas.) 
    more » « less
  2. Abstract Industry 4.0 is based on the digitization of manufacturing industries and has raised the prospect for substantial improvements in productivity, quality, and customer satisfaction. This digital transformation not only affects the way products are manufactured but also creates new opportunities for the design of products, processes, services, and systems. Unlike traditional design practices based on system-centric concepts, design for these new opportunities requires a holistic view of the human (stakeholder), artefact (product), and process (realization) dimensions of the design problem. In this paper we envision a “human-cyber-physical view of the systems realization ecosystem,” termed “Design Engineering 4.0 (DE4.0),” to reconceptualize how cyber and physical technologies can be seamlessly integrated to identify and fulfil customer needs and garner the benefits of Industry 4.0. In this paper, we review the evolution of Engineering Design in response to advances in several strategic areas including smart and connected products, end-to-end digital integration, customization and personalization, data-driven design, digital twins and intelligent design automation, extended supply chains and agile collaboration networks, open innovation, co-creation and crowdsourcing, product servitization and anything-as-a-service, and platformization for the sharing economy. We postulate that DE 4.0 will account for drivers such as Internet of Things, Internet of People, Internet of Services, and Internet of Commerce to deliver on the promise of Industry 4.0 effectively and efficiently. Further, we identify key issues to be addressed in DE 4.0 and engage the design research community on the challenges that the future holds. 
    more » « less
  3. Digital Twin (DT) is one of the key enabling technologies for realizing the promise of Smart Manufacturing (SM) and Industry 4.0 to improve production systems operation. Driven by the generation and analysis of high volume data coming from interconnected cyber and physical spaces, DTs are real-time digital images of physical systems, processes or products that help evaluate and improve business performance. This paper proposes a novel DT architecture for the real- time monitoring and evaluation of large-scale SM systems. An application to a manufacturing flow-shop is presented to illustrate the usefulness of the proposed methodology. 
    more » « less
  4. ASEE Manufacturing Division (Ed.)
    The manufacturing workspace and the technician workforce that supports that space tomorrow is an important issue to deal with today. As Industry 4.0 is absorbed into manufacturing facilities around the country, engineering technicians working in these facilities adjust to make tomorrow today. The National Science Foundation has supported the Florida Advanced Technological Education Center (FLATE) contiguously since 2004. FLATE's intent is to craft a manufacturing workforce that makes Florida manufacturers globally competitive. FLATE crafted and the Florida Department of Education now supported two-year Engineering Technology degree (A.S. ET) is the vehicle for manufacturing education in Florida. The degree is offered in over 85% of the colleges in the Florida College System (FCS) and has over 2,000 students enrolled statewide. The current NSF-supported project is to conduct an I4.0-focused Caucus of manufacturers and ET degree college faculty to collectively identify skill issues that will affect manufacturing production efficiency and product reliability. The project team initially used the nine Industry 4.0 (I4.0) technology areas identified by the Boston Consulting Group and selected four that will directly impact starting technicians working in companies that are already implementing Industry 4.0 technologies: (1) Autonomous Robots, (2) Simulation, (3) Industrial Internet of Things and (4) Additive/Subtractive Manufacturing and Advanced Materials. Technician skills are defined as those needed to set up, operate, troubleshoot, and maintain production and process equipment. Specific skills that fall in the I4.0 technologies identified as relevant for starting technicians were defined to be those that will be needed in the next 3-5 years. Initial questionnaire responses and subsequent data analysis detail are provided. Identified skills gaps as recognized by the manufacturers and faculty are provided and discussed. 
    more » « less
  5. In Northern Virginia, engineering technology career pathways are underdeveloped. Rapid changes in industrial processes have led to an increased need for adaptable and flexible workers who can respond creatively to shifting production technologies (Agarwal et al., 2018). In particular, workers with expertise in design thinking, communication, and critical thinking skills are in high demand (Giffi et al., 2018). Despite high wages created by this demand, engineering technology careers are largely invisible to students and the belief that manufacturing is low-tech persists (Giffi et al., 2017; Magnolia Consulting, 2022). These conditions suggest that investment in teacher professional learning (PL) is warranted. The integration of digital fabrication (e.g., 3D printing) into classroom teaching is one promising avenue to increase student interest and awareness of engineering technology careers (Peppler et al., 2016). However, studies of classroom implementation of digital fabrication technologies also report that teachers struggle to move beyond “keychain syndrome” – the tendency to fall back to reproducing simple objects, such as a keychain (Blikstein, 2014; Eisenberg, 2013). Educator PL in digital fabrication has centered on machine operation, and not the pedagogy, cognitive strategies, and processes to situate the technology (Smith et al., 2015). This project investigates the effectiveness of a sustained and interdisciplinary design thinking PL fellowship (“Makers By Design”) in improving integration of fabrication and design thinking into teaching practice. Design thinking is a non-linear user-centered strategy used to approach the design of products, emphasizing collaborative project-based methods to solve real-life problems (Brown, 2008). In the classroom, design thinking can serve as a cognitive bridge between a design problem and digital fabrication technologies. Participating Makers By Design fellows (n=17) completed 1) a series of design thinking workshops, 2) practice teaching at digital fabrication summer camps, and 3) development and integration of a design thinking challenge. Fellows completed the above in interdisciplinary groups consisting of K-12 teachers, college faculty, and librarians. Using a mixed-methods approach, this paper evaluates the extent to which participating educators reported increased confidence in integrating design thinking and digital fabrication into their instruction, demonstrated content mastery during teaching practice, and successfully developed and deployed design challenges. Data sources include pre- and post-surveys, focus groups within teaching discipline, and observations of summer camp and classroom teaching. Project results are aligned with the existing literature on successful PL (e.g., Capps et al., 2012) and recommendations for future digital fabrication-centered PL are discussed. 
    more » « less