skip to main content


Title: Enhancing Urban Flow Maps via Neural ODEs

Flow super-resolution (FSR) enables inferring fine-grained urban flows with coarse-grained observations and plays an important role in traffic monitoring and prediction. The existing FSR solutions rely on deep CNN models (e.g., ResNet) for learning spatial correlation, incurring excessive memory cost and numerous parameter updates. We propose to tackle the urban flows inference using dynamic systems paradigm and present a new method FODE -- FSR with Ordinary Differential Equations (ODEs). FODE extends neural ODEs by introducing an affine coupling layer to overcome the problem of numerically unstable gradient computation, which allows more accurate and efficient spatial correlation estimation, without extra memory cost. In addition, FODE provides a flexible balance between flow inference accuracy and computational efficiency. A FODE-based augmented normalization mechanism is further introduced to constrain the flow distribution with the influence of external factors. Experimental evaluations on two real-world datasets demonstrate that FODE significantly outperforms several baseline approaches.

 
more » « less
Award ID(s):
1823279
NSF-PAR ID:
10211118
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI} 2020
Page Range / eLocation ID:
1295 to 1302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional neural networks (CNNs) play an important role in today's mobile and edge computing systems for vision-based tasks like object classification and detection. However, state-of-the-art methods on CNN acceleration are trapped in either limited practical latency speed-up on general computing platforms or latency speed-up with severe accuracy loss. In this paper, we propose a spatial-based dynamic CNN acceleration framework, NeuLens, for mobile and edge platforms. Specially, we design a novel dynamic inference mechanism, assemble region-aware convolution (ARAC) supernet, that peels off redundant operations inside CNN models as many as possible based on spatial redundancy and channel slicing. In ARAC supernet, the CNN inference flow is split into multiple independent micro-flows, and the computational cost of each can be autonomously adjusted based on its tiled-input content and application requirements. These micro-flows can be loaded into hardware like GPUs as single models. Consequently, its operation reduction can be well translated into latency speed-up and is compatible with hardware-level accelerations. Moreover, the inference accuracy can be well preserved by identifying critical regions on images and processing them in the original resolution with large micro-flow. Based on our evaluation, NeuLens outperforms baseline methods by up to 58% latency reduction with the same accuracy and by up to 67.9% accuracy improvement under the same latency/memory constraints. 
    more » « less
  2. Abstract. The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability. 
    more » « less
  3. Abstract

    In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.

     
    more » « less
  4. null (Ed.)

    This paper introduces a hierarchical traffic model for spread measurement of network traffic flows. The hierarchical model, which aggregates lower level flows into higher-level flows in a hierarchical structure, will allow us to measure network traffic at different granularities at once to support diverse traffic analysis from a grand view to fine-grained details. The spread of a flow is the number of distinct elements (under measurement) in the flow, where the flow label (that identifies packets belonging to the flow) and the elements (which are defined based on application need) can be found in packet headers or payload. Traditional flow spread estimators are designed without hierarchical traffic modeling in mind, and incur high overhead when they are applied to each level of the traffic hierarchy. In this paper, we propose a new Hierarchical Virtual bitmap Estimator (HVE) that performs simultaneous multi-level traffic measurement, at the same cost of a traditional estimator, without degrading measurement accuracy. We implement the proposed solution and perform experiments based on real traffic traces. The experimental results demonstrate that HVE improves measurement throughput by 43% to 155%, thanks to the reduction of perpacket processing overhead. For small to medium flows, its measurement accuracy is largely similar to traditional estimators that work at one level at a time. For large aggregate and base flows, its accuracy is better, with up to 97% smaller error in our experiments.

     
    more » « less
  5. Abstract

    The ubiquity of microplastics in marine environments is of growing concern and is increasingly receiving widespread attention. Due to the role of rivers and streams as suppliers of microplastics to the marine environment, it is essential to accurately capture their movements at these scales, but modeling and experimental knowledge in such settings is still limited. In this work, three Markov models, including a continuous time random walk model, Bernoulli model, and spatial Markov model (SMM), are implemented to investigate polyethylene particles transport in open‐channel flows. First, a three‐dimensional high‐resolution direct numerical simulation (DNS) fully resolves a canonical open‐channel flow, and particle transport is simulated using idealized point particles. Then, a series of laboratory transport experiments are conducted in a circulating water tank, and particle image velocimetry methods are used to obtain particle‐tracking data. We find that the correlated Bernoulli model and SMM can successfully reproduce the transport of both DNS and laboratory experiments, particularly in the prediction of measured breakthrough curves, which highlights the importance of correlation between the successive steps. A major benefit of these models is a computational cost that is several orders of magnitude less than, for example, DNS, which demonstrates their high‐efficiency and effectiveness. Therefore, this research offers new insights into the transport of microplastics in open‐channel systems like rivers and streams, which is necessary to prevent and reduce the environmental hazards of microplastics.

     
    more » « less