skip to main content

Title: Enhancing Urban Flow Maps via Neural ODEs

Flow super-resolution (FSR) enables inferring fine-grained urban flows with coarse-grained observations and plays an important role in traffic monitoring and prediction. The existing FSR solutions rely on deep CNN models (e.g., ResNet) for learning spatial correlation, incurring excessive memory cost and numerous parameter updates. We propose to tackle the urban flows inference using dynamic systems paradigm and present a new method FODE -- FSR with Ordinary Differential Equations (ODEs). FODE extends neural ODEs by introducing an affine coupling layer to overcome the problem of numerically unstable gradient computation, which allows more accurate and efficient spatial correlation estimation, without extra memory cost. In addition, FODE provides a flexible balance between flow inference accuracy and computational efficiency. A FODE-based augmented normalization mechanism is further introduced to constrain the flow distribution with the influence of external factors. Experimental evaluations on two real-world datasets demonstrate that FODE significantly outperforms several baseline approaches.

; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI} 2020
Page Range or eLocation-ID:
1295 to 1302
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow inmore »the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.« less
  2. Abstract

    In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP aremore »evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.

    « less
  3. This paper introduces a hierarchical traffic model for spread measurement of network traffic flows. The hierarchical model, which aggregates lower level flows into higher-level flows in a hierarchical structure, will allow us to measure network traffic at different granularities at once to support diverse traffic analysis from a grand view to fine-grained details. The spread of a flow is the number of distinct elements (under measurement) in the flow, where the flow label (that identifies packets belonging to the flow) and the elements (which are defined based on application need) can be found in packet headers or payload. Traditional flow spread estimators are designed without hierarchical traffic modeling in mind, and incur high overhead when they are applied to each level of the traffic hierarchy. In this paper, we propose a new Hierarchical Virtual bitmap Estimator (HVE) that performs simultaneous multi-level traffic measurement, at the same cost of a traditional estimator, without degrading measurement accuracy. We implement the proposed solution and perform experiments based on real traffic traces. The experimental results demonstrate that HVE improves measurement throughput by 43% to 155%, thanks to the reduction of perpacket processing overhead. For small to medium flows, its measurement accuracy is largely similarmore »to traditional estimators that work at one level at a time. For large aggregate and base flows, its accuracy is better, with up to 97% smaller error in our experiments.

    « less
  4. Abstract

    Food supply chains are essential for distributing goods from production to consumption points. These complex supply chains are important for food security and availability. Recent research has developed novel methods to estimate food flows with high spatial resolution, but we do not currently understand how fine-grained food supply chains vary in time. In this study, we use an improved version of the Food Flow Model to estimate food flows (kg) between all county pairs across all food commodity groups for the years 2007, 2012, and 2017 (which requires estimating 206.3 million links). We then determine the core counties to the US food flow networks through time with a multi-criteria decision analysis technique. Our estimates of county-to-county food flows in time are freely available with this paper and could be useful for future research, policy, and decision-making.

  5. Smooth camber morphing aircraft offer increased control authority and improved aerodynamic efficiency. Smart material actuators have become a popular driving force for shape changes, capable of adhering to weight and size constraints and allowing for simplicity in mechanical design. As a step towards creating uncrewed aerial vehicles (UAVs) capable of autonomously responding to flow conditions, this work examines a multifunctional morphing airfoil’s ability to follow commands in various flows. We integrated an airfoil with a morphing trailing edge consisting of an antagonistic pair of macro fiber composites (MFCs), serving as both skin and actuator, and internal piezoelectric flex sensors to form a closed loop composite system. Closed loop feedback control is necessary to accurately follow deflection commands due to the hysteretic behavior of MFCs. Here we used a deep reinforcement learning algorithm, Proximal Policy Optimization, to control the morphing airfoil. Two neural controllers were trained in a simulation developed through time series modeling on long short-term memory recurrent neural networks. The learned controllers were then tested on the composite wing using two state inference methods in still air and in a wind tunnel at various flow speeds. We compared the performance of our neural controllers to one using traditional position-derivativemore »feedback control methods. Our experimental results validate that the autonomous neural controllers were faster and more accurate than traditional methods. This research shows that deep learning methods can overcome common obstacles for achieving sufficient modeling and control when implementing smart composite actuators in an autonomous aerospace environment.

    « less