A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method.
more »
« less
A Plate-Like Sensor for the Identification of Sample Viscoelastic Properties Using Contact Resonance Atomic Force Microscopy
Abstract In this article, we present a new contact resonance atomic force microscopy-based method utilizing a square, plate-like microsensor to accurately estimate viscoelastic sample properties. A theoretical derivation, based on Rayleigh–Ritz method and on an “unconventional” generalized eigenvalue problem, is presented and a numerical experiment is devised to verify the method. We present an updated sensitivity criterion that allows users, given a set of measured in-contact eigenfrequencies and modal damping ratios, to select the best eigenfrequency for accurate data estimation. The verification results are then presented and discussed. Results show that the proposed method performs extremely well in the identification of viscoelastic properties over broad ranges of nondimensional sample stiffness and damping values.
more »
« less
- PAR ID:
- 10211411
- Date Published:
- Journal Name:
- ASME Letters in Dynamic Systems and Control
- Volume:
- 1
- Issue:
- 3
- ISSN:
- 2689-6117
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method.more » « less
-
Accurately measuring the viscoelastic properties of biomaterials is critical for understanding their functions in biological systems and optimizing their development for specific applications. Conventional methods often require direct physical contact, which hinders longitudinal studies of sterile samples and impose strict requirements in sample preparation. Here, we introduce tensile acoustic rheometry (TAR), a technique for rapid, contactless characterization of soft viscoelastic biomaterials. TAR uses a dual-mode ultrasound approach to apply an upward force impulse, generating oscillatory tensile and compressive motion in a small, free-standing sample (~30 mm3) with its bottom immobilized on a pre-wetted flat surface by capillary stiction. High frequency ultrasound pulse echo detection is employed to track this motion via the movement of the top surface of the sample in real time. In this study, we developed a theoretical framework of the tensile-compression motion of the sample from which Young’s modulus and viscosity of the sample are determined based on the TAR measurements. TAR was validated across a variety of samples, including engineered hydrogels and commercially available natural food products. Results from TAR measurements aligned closely with theoretical predictions, reported values, and shear wave elastography measurements. These findings underscore the versatility and flexibility of TAR as a robust, versatile rheological method for biomaterial characterization with minimal sample preparation requirements.more » « less
-
The viscoelastic properties of carbon fiber reinforced thermoset composites are of utmost importance during processing such materials using composite forming. The quality of the manufactured parts is largely dependent on intelligent process parameter selection based on the viscoelastic and flow properties of the polymer resin. Viscoelastic properties such as the complex viscosity (η*), storage modulus (G'), loss modulus (G''), and loss tangent (tanδ) are used to determine the critical transition events (such as gelation) during curing. An understanding of the changes in viscoelastic properties as a function of processing temperature and degree of cure provides insight to establish a suitable processing range for compression forming of prepreg systems. However, tracking viscoelastic properties as a function of cure during the forming process is a challenging task. In this current work, we have investigated the effect of sample size and adhesive type on the rheological properties of a commercially available carbon fiber prepreg material. Specifically, determining the linear viscoelastic region (LVE) as a function of sample configuration and different adhesive chemistries were explored. The results suggest that the square-shaped sample geometries coupled with cyanoacrylate based adhesive are optimum for conducting rheological characterization on the carbon fiber prepreg system.more » « less
-
Biomimetic scale-covered substrates are architected meta-structures exhibiting fascinating emergent nonlinearities via the geometry of collective scales contacts. Despite much progress in understanding their elastic nonlinearity, their dissipative behavior arising from scales sliding is relatively uninvestigated in the dynamic regime. Recently discovered is the phenomena of viscous emergence, where dry Coulomb friction between scales can lead to apparent viscous damping behavior of the overall multi-material substrate. In contrast to this structural dissipation, material dissipation common in many polymers has never been considered, especially synergistically with geometrical factors. This aspect is addressed here, where material viscoelasticity is introduced via a simple Kelvin–Voigt model for brevity and clarity. The results contrast the two damping sources in these architectured systems: material viscoelasticity and geometrical frictional scales contact. It is discovered that although topically similar in effective damping, viscoelastic damping follows a different damping envelope than dry friction, including starkly different effects on damping symmetry and specific damping capacity.more » « less
An official website of the United States government

