The integration of muscle cells with soft robotics in recent years has led to the development of biohybrid machines capable of untethered locomotion. A major frontier that currently remains unexplored is neuronal actuation and control of such muscle-powered biohybrid machines. As a step toward this goal, we present here a biohybrid swimmer driven by on-board neuromuscular units. The body of the swimmer consists of a free-standing soft scaffold, skeletal muscle tissue, and optogenetic stem cell-derived neural cluster containing motor neurons. Myoblasts embedded in extracellular matrix self-organize into a muscle tissue guided by the geometry of the scaffold, and the resulting muscle tissue is cocultured in situ with a neural cluster. Motor neurons then extend neurites selectively toward the muscle and innervate it, developing functional neuromuscular units. Based on this initial construct, we computationally designed, optimized, and implemented light-sensitive flagellar swimmers actuated by these neuromuscular units. Cyclic muscle contractions, induced by neural stimulation, drive time-irreversible flagellar dynamics, thereby providing thrust for untethered forward locomotion of the swimmer. Overall, this work demonstrates an example of a biohybrid robot implementing neuromuscular actuation and illustrates a path toward the forward design and control of neuron-enabled biohybrid machines.
more »
« less
Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines
The intriguing opportunities enabled by the use of living components in biological machines have spurred the development of a variety of muscle‐powered biohybrid robots in recent years. Among them, several generations of tissue‐engineered biohybrid walkers have been established as reliable platforms to study untethered locomotion. However, despite these advances, such technology is not mature yet, and major challenges remain. Herein, steps are taken to address two of them: the lack of systematic design approaches, common to biohybrid robotics in general, and in the case of biohybrid walkers specifically, the lack of maneuverability. A dual‐ring biobot is presented which is computationally designed and selected to exhibit robust forward motion and rotational steering. This dual‐ring biobot consists of two independent muscle actuators and a four‐legged scaffold asymmetric in the fore/aft direction. The integration of multiple muscles within its body architecture, combined with differential electrical stimulation, allows the robot to maneuver. The dual‐ring robot design is then fabricated and experimentally tested, confirming computational predictions and turning abilities. Overall, a design approach based on modeling, simulation, and fabrication exemplified in this versatile robot represents a route to efficiently engineer complex biological machines with adaptive functionalities.
more »
« less
- PAR ID:
- 10211794
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 3
- Issue:
- 5
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tissue-engineered living machines is an emerging discipline that employs complex interactions between living cells and engineered scaffolds to self-assemble biohybrid systems for diverse scientific research and technological applications. Here, we report an adaptive, autonomous biohybrid pumping machine with flow loop feedback powered by engineered living muscles. The tissue is made from skeletal muscle cells (C2C12) and collagen I/Matrigel matrix, which self-assembles into a ring that compresses a soft hydrogel tube connected at both ends to a rigid fluidic platform. The muscle ring contracts in a repetitive fashion autonomously squeezing the tube, resulting in an impedance pump. The resulting flow is circulated back to the muscle ring forming a feedback loop, which allows the pump to respond to the cues received from the flow it generates and adaptively manage its pumping performances based on the feedback. The developed biohybrid pumping system may have broad utility and impact in health, medicine and bioengineering.more » « less
-
Abstract Engineering living systems is a rapidly emerging discipline where the functional biohybrid robotics (or “Bio-bots”) are built by integrating of living cells with engineered scaffolds. Inspired by embryonic heart, we presented earlier the first example of a biohybrid valveless pump-bot, an impedance pump, capable of transporting fluids powered by engineered living muscle tissues. The pump consists of a soft tube attached to rigid boundaries at the ends, and a muscle ring that squeezes the tube cyclically at an off-center location. Cyclic contraction results in a net flow through the tube. We observed that muscle force occasionally buckles the tube in a random fashion, i.e., similar muscles do not buckle the tube consistently. In order to explain this anomaly, here we develop an analytical model to predict the deformation and stability of circular elastic tubes subjected to a uniform squeezing force due to a muscle ring (like a taught rubber band). The prediction from the model is validated by comparing with experiments and finite element analysis. The nonlinear model reveals that the circular elastic tube cannot buckle irrespective of muscle force. Buckling state can be reached and sustained by bending and folding the tube before applying the muscle ring. This imperfection may appear during assembly of the pump or from nonuniform thickness of the muscle ring. This study provides design guides for developing advanced biohybrid impedance pumps for diverse applications.more » « less
-
Biohybrid robots, composed of cellular actuators and synthetic scaffolds, have garnered much attention in recent years owing to the advantages provided by their biological components. In recent years, various forms of biohybrid robots have been developed that are capable of life-like movements, such as walking, swimming, and gripping. Specifically, for walking or crawling biorobots, there is a need for complex functionality and versatile and robust fabrication processes. Here, we designed and fabricated multi-actuator biohybrid walkers with multi-directional walking capabilities in response to noninvasive optical stimulation through a scalable modular biofabrication process. Our new fabrication approach provides a constant mechanical strain throughout the cellular differentiation and maturation process. This maximizes the myotube formation and alignment, limits passive bending, and produces higher active forces. These demonstrations of the new fabrication process and bioactuator designs can pave the way for advanced multi-cellular biohybrid robots and enhance our understanding of the emergent behaviors of these multi-cellular engineered living systems.more » « less
-
Leveraging living muscle as an efficient and adaptive actuator for soft robots has been of increasing interest over the past decade, with a focus on proof‐of‐concept demonstrations of function. Reproducible design and scalable manufacturing of biohybrid machines requires methods to increase the stroke output of strain‐limited muscle actuators and enable accurate and precise quality control and performance monitoring. Compliant mechanical elements, termed flexures, are designed to enhance muscle contractile stroke to ≈5× previously reported values and decode contraction dynamics with high spatiotemporal resolution. Combining rigid and flexible elements within a linear elastic flexure enables us to outperform the sensitivity of gold standard elastomeric beam‐based measurements of muscle contraction at both low‐ and high‐frequency stimulations. Flexures are leveraged to make quantitative comparisons of force, work, and power outputs in muscle actuators, driving us to discover a new observation of frequency‐dependent fatigue in muscle, and also develop a novel method for tuning muscle contractile dynamics in a frequency‐independent manner. By enhancing the contractile stroke of muscle actuators and precisely tuning contractile dynamics and endurance with unprecedented precision, this study sets the stage for leveraging flexures to improve robust, reproducible, and predictive design and manufacturing of next‐generation biohybrid robots.more » « less
An official website of the United States government
