eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory
More Like this
-
Abstract The diffuse flux of cosmic neutrinos has been measured by the IceCube Observatory from TeV to PeV energies. We show that an improved characterization of this flux at lower energies, TeV and sub-TeV, reveals important information on the nature of the astrophysical neutrino sources in a model-independent way. Most significantly, it could confirm the present indications that neutrinos originate in cosmic environments that are optically thick to GeV–TeV γ -rays. This conclusion will become inevitable if an uninterrupted or even steeper neutrino power law is observed in the TeV region. In such γ -ray-obscured sources, the γ -rays that inevitably accompany cosmic neutrinos will cascade down to MeV–GeV energies. The requirement that the cascaded γ -ray flux accompanying cosmic neutrinos should not exceed the observed diffuse γ -ray background puts constraints on the peak energy and density of the radiation fields in the sources. Our calculations inspired by the existing data suggest that a fraction of the observed diffuse MeV–GeV γ -ray background may be contributed by neutrino sources with intense radiation fields that obscure the high-energy γ -ray emission accompanying the neutrinos.more » « less
-
Abstract Thermal MeV neutrino emission from core-collapse supernovae offers a unique opportunity to probe physics beyond the Standard Model in the neutrino sector. The next generation of neutrino experiments, such as DUNE and Hyper-Kamiokande, can detect 𝒪(10 3 ) and 𝒪(10 4 ) neutrinos in the event of a Galactic supernova, respectively. As supernova neutrinos propagate to Earth, they may interact with the local dark matter via hidden mediators and may be delayed with respect to the initial neutrino signal. We show that for sub-MeV dark matter, the presence of dark matter-neutrino interactions may lead to neutrino echoes with significant time delays. The absence or presence of this feature in the light curve of MeV neutrinos from a supernova allows us to probe parameter space that has not been explored by dark matter direct detection experiments.more » « less
-
Abstract Novel neutrino self-interaction can open up viable parameter space for the relic abundance of sterile-neutrino dark matter (S ν DM). In this work, we constrain the relic target using core-collapse supernova which features the same fundamental process and a similar environment to the early universe era when S ν DM is dominantly produced. We present a detailed calculation of the effects of a massive scalar mediated neutrino self-interaction on the supernova cooling rate, including the derivation of the thermal potential in the presence of non-zero chemical potentials from plasma species. Our results demonstrate that the supernova cooling argument can cover the neutrino self-interaction parameter space that complements terrestrial and cosmological probes.more » « less