skip to main content


Title: Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation
Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co 3 (py) 3 Co 6 Se 8 L 6 (py = pyridine, L = Ph 2 PN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals.  more » « less
Award ID(s):
1944843 1719797
NSF-PAR ID:
10212254
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
39
ISSN:
2041-6520
Page Range / eLocation ID:
10744 to 10751
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I , Rb 2 Mn 3 (VO 4 ) 2 CO 3 , crystallizes in the trigonal crystal system in the space group P 3̄1 c , and compound II , K 2 Co 3 (VO 4 ) 2 CO 3 , crystallizes in the hexagonal space group P 6 3 / m . Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO 6 octahedra and MO 5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c -axis through tetrahedral [VO 4 ] groups. The MO 5 units are connected with each other by carbonate groups in the ab -plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO 6 -honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO 5 triangular lattice ordered below 2.3 K in a colinear ‘up–up–down’ fashion, followed by a planar ‘Y’ type magnetic structure. K 2 Co 3 (VO 4 ) 2 CO 3 ( II ) exhibits a canted antiferromagnetic ordering below T N = 8 K. The Curie–Weiss fit (200–350 K) gives a Curie–Weiss temperature of −42 K suggesting a dominant antiferromagnetic coupling in the Co 2+ magnetic sublattices. 
    more » « less
  2. null (Ed.)
    Redox-active multimetallic platforms with synthetically addressable and hemilabile active sites are attractive synthetic targets for mimicking the reactivity of enzymatic co-factors toward multielectron transformations. To this end, a family of ternary clusters featuring three edge metal sites anchored on a [Co 6 Se 8 ] multimetallic support via amidophosphine ligands are a promising platform. In this report, we explore how small changes in the stereoelectronic properties of these ligands alter [Co 6 Se 8 ] metalloligand formation, but also substrate binding affinity and strength of the edge/support interaction in two new ternary clusters, M 3 Co 6 Se 8 L 6 (M = Zn, Fe; L (−) = Ph 2 PN (−)i Pr). These clusters are characterized extensively using a range of methods, including single crystal X-ray diffraction, electronic absorption spectroscopy and cyclic voltammetry. Substrate binding studies reveal that Fe 3 Co 6 Se 8 L 6 resists coordination of larger ligands like pyridine or tetrahydrofuran, but binds the smaller ligand CN t Bu. Additionally, investigations into the synthesis of new [Co 6 Se 8 ] metalloligands using two aminophosphines, Ph 2 PN(H) i Pr (L H ) and i Pr 2 PN(H) i Pr, led to the synthesis and characterization of Co 6 Se 8 L H 6 , as well as the smaller clusters Co 4 Se 2 (CO) 6 L H 4 , Co 3 Se(μ 2 -PPh 2 )(CO) 4 L H 3 , and [Co(CO) 3 ( i Pr 2 PN(H) i Pr)] 2 . Cumulatively, this study expands our understanding on the effect of the stereoelectronic properties of aminophosphine ligands in the synthesis of cobalt chalcogenide clusters, and, importantly on modulating the push–pull dynamic between the [Co 6 Se 8 ] support, the edge metals and incoming coordinating ligands in ternary M 3 Co 6 Se 8 L 6 clusters. 
    more » « less
  3. Abstract

    The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.

     
    more » « less
  4. Abstract

    Cs2SnI6perovskite displays excellent air stability and a high absorption coefficient, promising for photovoltaic and optoelectronic applications. However, Cs2SnI6‐based device performance is still low as a result of lacking optimized synthesis approaches to obtain high quality Cs2SnI6crystals. Here, a new simple method to synthesize single crystalline Cs2SnI6perovskite at a liquid–liquid interface is reported. By controlling solvent conditions and Cs2SnI6supersaturation at the liquid–liquid interface, Cs2SnI6crystals can be obtained from 3D to 2D growth with controlled geometries such as octahedron, pyramid, hexagon, and triangular nanosheets. The formation mechanisms and kinetics of complex shapes/geometries of high quality Cs2SnI6crystals are investigated. Freestanding single crystalline 2D nanosheets can be fabricated as thin as 25 nm, and the lateral size can be controlled up to sub‐millimeter regime. Electronic property of the high quality Cs2SnI62D nanosheets is also characterized, featuring a n‐type conduction with a high carrier mobility of 35 cm2V−1s−1. The interfacial reaction‐controlled synthesis of high‐quality crystals and mechanistic understanding of the crystal growth allow to realize rational design of materials, and the manipulation of crystal growth can be beneficial to achieve desired properties for potential functional applications.

     
    more » « less
  5. ChemPhysChem (Ed.)
    Abstract

    Molecular clusters can function as nanoscale atoms/superatoms, assembling into superatomic solids, a new class of solid‐state materials with designable properties through modifications on superatoms. To explore possibilities on diversifying building blocks, here we thoroughly studied one representative superatom, Co6Se8(PEt3)6. We probed its structural, electronic, and magnetic properties and revealed its detailed electronic structure as valence electrons delocalize over inorganic [Co6Se8] core while ligands function as an insulated shell.59Co SSNMR measurements on the core and31P,13C on the ligands show that the neutral Co6Se8(PEt3)6is diamagnetic and symmetric, with all ligands magnetically equivalent. Quantum computations cross‐validate NMR results and reveal degenerate delocalized HOMO orbitals, indicating aromaticity. Ligand substitution keeps the inorganic core nearly intact. After losing one electron, the unpaired electron in [Co6Se8(PEt3)6]+1is delocalized, causing paramagnetism and a delocalized electron spin. Notably, this feature of electron/spin delocalization over a large cluster is attractive for special single‐electron devices.

     
    more » « less