Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade‐offs on alternative host plants, yet the evidence of such trade‐offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population‐genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more‐specialized species occur on fewer of their potential hosts than do less‐specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more‐specialized species do not appear to outperform more generalist species.
- Award ID(s):
- 1744552
- PAR ID:
- 10212353
- Date Published:
- Journal Name:
- Annual Review of Ecology, Evolution, and Systematics
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 1543-592X
- Page Range / eLocation ID:
- 103 to 122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract When herbivorous insects interact, they can increase or decrease each other's fitness. As it stands, we know little of what causes this variation. Classic competition theory predicts that competition will increase with niche overlap and population density. And classic hypotheses of herbivorous insect diversification predict that diet specialists will be superior competitors to generalists. Here, we test these predictions using phylogenetic meta‐analysis. We estimate the effects of diet breadth, population density and proxies of niche overlap: phylogenetic relatedness, physical proximity and feeding‐guild membership. As predicted, we find that competition between herbivorous insects increases with population density as well as phylogenetic and physical proximity. Contrary to predictions, competition tends to be stronger between than within feeding guilds and affects specialists as much as generalists. This is the first statistical evidence that niche overlap increases competition between herbivorous insects. However, niche overlap is not everything; complex feeding guild effects indicate important indirect interactions.
-
Abstract An animal’s diet breadth is a central aspect of its life history, yet the factors determining why some species have narrow dietary breadths (specialists) and others have broad dietary breadths (generalists) remain poorly understood. This challenge is pronounced in herbivorous insects due to incomplete host plant data across many taxa and regions. Here, we develop and validate machine learning models to predict pollen diet breadth in bees, using a bee phylogeny and occurrence data for 682 bee species native to the United States, aiming to better understand key drivers. We found that pollen specialist bees made an average of 72.9% of their visits to host plants and could be predicted with high accuracy (mean 94%). Our models predicted generalist bee species, which made up a minority of the species in our dataset, with lower accuracy (mean 70%). The models tested on spatially and phylogenetically blocked data revealed that the most informative predictors of diet breadth are plant phylogenetic diversity, bee species’ geographic range, and regional abundance. Our findings also confirm that range size is predictive of diet breadth and that both male and female specialist bees mostly visit their host plants. Overall, our results suggest we can use visitation data to predict specialist bee species in regions and for taxonomic groups where diet breadth is unknown, though predicting generalists may be more challenging. These methods can thus enhance our understanding of plant-pollinator interactions, leading to improved conservation outcomes and a better understanding of the pollination services bees provide.
-
Abstract Growing evidence suggests that organisms with narrow niche requirements are particularly disadvantaged in small habitat patches, typical of fragmented landscapes. However, the mechanisms behind this relationship remain unclear. Dietary specialists may be particularly constrained by the availability of their food resources as habitat area shrinks. For herbivorous insects, host plants may be filtered out of small habitat fragments by neutral sampling processes and deterministic plant community shifts due to altered microclimates, edge effects and browsing by ungulates.
We examined the relationship between forest fragment area and the abundance of dietary‐specialist and dietary‐generalist larval Lepidoptera (caterpillars) and their host plants in the northeastern USA. We surveyed caterpillars and their host plants over 3 years in equal‐sized plots within 32 forest fragments varying in area between 3 and 1014 ha. We tested whether the abundances and species richness of dietary specialists increased more than those of dietary generalists with increasing fragment area and, if so, whether the difference could be explained by reduced host plant availability or increased browsing by white‐tailed deer (
Odocoileus virginianus ).The overall abundance of dietary specialists was positively related to fragment area; the relationship was substantially weaker for dietary generalists. There was notable variation among species within diet breadth groups, however. There was no effect of fragment area on the diversity of dietary‐specialist or dietary‐generalist caterpillars. Deer activity was not related to the abundances of either dietary‐generalist or dietary‐specialist caterpillars.
Plant community composition was strongly associated with fragment area. Larger fragments were more likely to include host plants for both dietary‐specialist and dietary‐generalist caterpillars. Deer activity was correlated with decreased host plant availability for both groups, with a slightly stronger impact on host plants of dietary specialists. Although dietary specialists were more likely to lack host plants in fragments, the relationship between fragment area and host availability did not depend on caterpillar diet breadth.
This study provides further evidence that decreasing patch area disproportionately impacts specialist consumers. Because this relationship was derived from equal‐sized plots, it is robust to some criticisms levelled at fragmentation research. The mechanisms for specialist consumer declines, however, remain elusive.
-
Abstract Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continentwide analyses reveal – in all but one instance – that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another’s closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use.more » « less