The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better visual dog classifier by reading about dogs and listening to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP are inherently cross-modal, mapping different modalities to the same representation space. Specifically, we propose a simple cross-modal adaptation approach that learns from few-shot examples spanning different modalities. By repurposing class names as additional one-shot training samples, we achieve SOTA results with an embarrassingly simple linear classifier for vision-language adaptation. Furthermore, we show that our approach can benefit existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
more »
« less
Self-Supervised Audio-Visual Representation Learning for in-the-wild Videos
Humans understand videos from both the visual and audio aspects of the data. In this work, we present a self supervised cross modal representation approach for learning audio visual correspondence (AVC) for videos in the wild. After the learning stage, we explore retrieval in both cross modal and intra modal manner with the learned representations. We verify our experimental results on the VGGSound dataset and our approach achieves promising results.
more »
« less
- Award ID(s):
- 1633295
- PAR ID:
- 10212652
- Date Published:
- Journal Name:
- IEEE International Conference on Big Data
- ISSN:
- 2639-1589
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Representation learning is a challenging, but essential task in audiovisual learning. A key challenge is to generate strong cross-modal representations while still capturing discriminative information contained in unimodal features. Properly capturing this information is important to increase accuracy and robustness in audio-visual tasks. Focusing on emotion recognition, this study proposes novel cross-modal ladder networks to capture modality-specific in-formation while building strong cross-modal representations. Our method utilizes representations from a backbone network to implement unsupervised auxiliary tasks to reconstruct intermediate layer representations across the acoustic and visual networks. The skip connections between the cross-modal encoder and decoder provide powerful modality-specific and multimodal representations for emotion recognition. Our model on the CREMA-D corpus achieves high performance with precision, recall, and F1 scores over 80% on a six-class problem.more » « less
-
Emotion recognition is inherently a multimodal problem. Humans use both audible and visual cues to determine a person’s emotions. There has been extensive improvement in the methods we use to fuse audio and visual representations between two unimodal deep-learning models. However, there is a lack of accommodation for modalities that have a disparity in the amount of computational resources needed to provide the same amount of temporal information. As the sequence length increases, current methods often make simplifications such as discarding frames or cropping the sequence. This paper introduces a chunking methodology designed for cross-attention-based multimodal transformer architectures. The approach involves segmenting the visual input—the more computationally demanding modality—into chunks. Cross-attention is then performed between the encoded audio and visual features instead of the original sequence lengths of the unimodal backbones. Our method achieves significant improvements over conventional cross-attention techniques in the audio-visual domain for a six-class emotional recognition problem, demonstrating better F1 score, precision, and recall on the CREMA-D database while reducing computational overhead.more » « less
-
We propose XVO, a semi-supervised learning method for training generalized monocular Visual Odometry (VO) models with robust off-the-self operation across diverse datasets and settings. In contrast to standard monocular VO approaches which often study a known calibration within a single dataset, XVO efficiently learns to recover relative pose with real-world scale from visual scene semantics, i.e., without relying on any known camera parameters. We optimize the motion estimation model via self-training from large amounts of unconstrained and heterogeneous dash camera videos available on YouTube. Our key contribution is twofold. First, we empirically demonstrate the benefits of semi-supervised training for learning a general-purpose direct VO regression network. Second, we demonstrate multi-modal supervision, including segmentation, flow, depth, and audio auxiliary prediction tasks, to facilitate generalized representations for the VO task. Specifically, we find audio prediction task to significantly enhance the semi-supervised learning process while alleviating noisy pseudo-labels, particularly in highly dynamic and out-of-domain video data. Our proposed teacher network achieves state-of-the-art performance on the commonly used KITTI benchmark despite no multi-frame optimization or knowledge of camera parameters. Combined with the proposed semi-supervised step, XVO demonstrates off-the-shelf knowledge transfer across diverse conditions on KITTI, nuScenes, and Argoverse without fine-tuning.more » « less
-
By employing generative deep learning techniques, Deepfakes are created with the intent to create mistrust in society, manipulate public opinion and political decisions, and for other malicious purposes such as blackmail, scamming, and even cyberstalking. As realistic deepfake may involve manipulation of either audio or video or both, thus it is important to explore the possibility of detecting deepfakes through the inadequacy of generative algorithms to synchronize audio and visual modalities. Prevailing performant methods, either detect audio or video cues for deepfakes detection while few ensemble the results after predictions on both modalities without inspecting relationship between audio and video cues. Deepfake detection using joint audiovisual representation learning is not explored much. Therefore, this paper proposes a unified multimodal framework, Multimodaltrace, which extracts learned channels from audio and visual modalities, mixes them independently in IntrAmodality Mixer Layer (IAML), processes them jointly in IntErModality Mixer Layers (IEML) from where it is fed to multilabel classification head. Empirical results show the effectiveness of the proposed framework giving state-of-the-art accuracy of 92.9% on the FakeAVCeleb dataset. The cross-dataset evaluation of the proposed framework on World Leaders and Presidential Deepfake Detection Datasets gives an accuracy of 83.61% and 70% respectively. The study also provides insights into how the model focuses on different parts of audio and visual features through integrated gradient analysismore » « less
An official website of the United States government

