skip to main content

Title: Uncertainty Cost of Stochastic Producers: Metrics and Impacts on Power Grid Flexibility
The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage robust SCUC, one through a fixed and the other via an adjustable uncertainty set, for which the state-of-the-art techniques may not be always feasible, efficient, and practical. To address these concerns and to account for the effects of the uncertainty cost resulting from dispatch limitations of flexible resources, a new framework centered on the adjustable penetration of stochastic generation is proposed. Our hypothesis is that if the SCUC is scheduled with an appropriate dispatch level of stochastic generation, the system uncertainty cost will decrease, and subsequently, the system's ability to accommodate additional uncertainty will improve. Numerical simulations on a modified IEEE 73-bus test system verify the efficiency of the suggested assessment techniques.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE transactions on engineering management
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As the level of uncertain renewable capacity increases on power systems worldwide, industrial and academic researchers alike are seeking a scalable, transparent, effective approach to unit commitment under uncertainty. This paper presents a statistical ranking methodology that allows adaptive robust stochastic unit commitment using a modular structure, with much-needed flexibility. Specifically, this work describes a bus ranking methodology that identifies the most critical buses based on a worst-case metric. An important innovation is the ability to identify alternative metrics on which to rank the uncertainty set -- for example to minimize economic dispatch cost or ramping needs, to provide a customized robust unit commitment solution. Compared to traditional robust unit commitment models, the proposed model combines statistical tools with analytical framework of power system networks. The resulting formulation is easily implementable and customizable to the needs of the system operator. The method and its applications are validated against other established approaches, showing equivalent solution to the state-of-the-art approach. Case studies were conducted on the IEEE-30, IEEE-118 and pegase-1354 networks. In addition, the flexibility of bus ranking formulation is illustrated through implementation of alternative definitions of worst-case metrics. Results show that the bus ranking method performs as well as the best of these methods, with the provision of additional flexibility. 
    more » « less
  2. Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO). 
    more » « less
  3. In this paper, we study a nursing home staff schedule optimization problem under resident demand uncertainty. We formulate a two-stage stochastic binary program accordingly, with objective to minimize the total labor cost (linearly related to work time) incurred by both regular registered nurses (RRNs) and part-time nurses (PTNs). As a significant constraint, we balance RRNs’ total amount of work time with residents’ total service need for every considered shift. Besides, we restrict feasible shift schedules based on common scheduling practice. We conduct a series of computational experiments to validate the proposed model. We discuss our optimal solutions under different compositions of residents in terms of their disabilities. In addition, we compare the total labor costs and an RRN scheduling flexibility index with the given optimal solution under different combinations of RRNs and PTNs. Our analysis offers an operational approach to set the minimum number of nurses on flexible shift schedules to cover uncertain the service needs while maintaining a minimum labor cost. 
    more » « less
  4. The increasing uncertainties caused by the high-penetration of stochastic renewable generation resources and flexible loads pose challenges to the power system voltage stability. To address this issue, this paper proposes a probabilistic transferable deep kernel emulator (DKE) to extract the hidden relationship between uncertain sources, i.e., wind generations and loads, and load margin for probabilistic load margin assessment (PLMA). This emulator extends the Gaussian process kernel to the deep neural network (DNN) structure and thus gains the advantages of DNN in dealing with high-dimension uncertain inputs and the uncertainty quantification capability of the Gaussian process. A transfer learning framework is also developed to reduce the invariant representation space distance between the old topology and new one. It allows the DKE to be quickly fine tuned with only a few samples under the new topology. Numerical results carried out on the modified IEEE 39-bus and 118-bus power systems demonstrate the strong robustness of the proposed transferable DKE to uncertain wind and load power as well as topology changes while maintaining high accuracy. 
    more » « less
  5. There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these prices via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables. 
    more » « less