- Award ID(s):
- 1847077
- PAR ID:
- 10212937
- Date Published:
- Journal Name:
- IEEE transactions on engineering management
- ISSN:
- 0018-9391
- Page Range / eLocation ID:
- 1-12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO).more » « less
-
As the level of uncertain renewable capacity increases on power systems worldwide, industrial and academic researchers alike are seeking a scalable, transparent, effective approach to unit commitment under uncertainty. This paper presents a statistical ranking methodology that allows adaptive robust stochastic unit commitment using a modular structure, with much-needed flexibility. Specifically, this work describes a bus ranking methodology that identifies the most critical buses based on a worst-case metric. An important innovation is the ability to identify alternative metrics on which to rank the uncertainty set -- for example to minimize economic dispatch cost or ramping needs, to provide a customized robust unit commitment solution. Compared to traditional robust unit commitment models, the proposed model combines statistical tools with analytical framework of power system networks. The resulting formulation is easily implementable and customizable to the needs of the system operator. The method and its applications are validated against other established approaches, showing equivalent solution to the state-of-the-art approach. Case studies were conducted on the IEEE-30, IEEE-118 and pegase-1354 networks. In addition, the flexibility of bus ranking formulation is illustrated through implementation of alternative definitions of worst-case metrics. Results show that the bus ranking method performs as well as the best of these methods, with the provision of additional flexibility.more » « less
-
One of the main desired capabilities of the smart grid is ‘self‐healing’, which is the ability to quickly restore power after a disturbance. Due to critical outage events, customer demand or load is at times disconnected or shed temporarily. While deterministic optimisation models have been devised to help operators expedite load shed recovery by harnessing the flexibility of the grid's topology (i.e. transmission line switching), an important issue that remains unaddressed is how to cope with the uncertainty in generation and demand encountered during the recovery process. This study introduces two‐stage stochastic models to deal with these uncertain parameters, and one of them incorporates conditional value‐at‐risk to measure the risk level of unrecovered load shed. The models are implemented using a scenario‐based approach where the objective is to maximise load shed recovery in the bulk transmission network by switching transmission lines and performing other corrective actions (e.g. generator re‐dispatch) after the topology is modified. The benefits of the proposed stochastic models are compared with a deterministic mean‐value model, using the IEEE 118‐ and 14‐bus test cases. Experiments highlight how the proposed approach can serve as an offline contingency analysis tool, and how this method aids self‐healing by recovering more load shedding.
-
The increasing uncertainties caused by the high-penetration of stochastic renewable generation resources and flexible loads pose challenges to the power system voltage stability. To address this issue, this paper proposes a probabilistic transferable deep kernel emulator (DKE) to extract the hidden relationship between uncertain sources, i.e., wind generations and loads, and load margin for probabilistic load margin assessment (PLMA). This emulator extends the Gaussian process kernel to the deep neural network (DNN) structure and thus gains the advantages of DNN in dealing with high-dimension uncertain inputs and the uncertainty quantification capability of the Gaussian process. A transfer learning framework is also developed to reduce the invariant representation space distance between the old topology and new one. It allows the DKE to be quickly fine tuned with only a few samples under the new topology. Numerical results carried out on the modified IEEE 39-bus and 118-bus power systems demonstrate the strong robustness of the proposed transferable DKE to uncertain wind and load power as well as topology changes while maintaining high accuracy.more » « less
-
In this paper, we study a nursing home staff schedule optimization problem under resident demand uncertainty. We formulate a two-stage stochastic binary program accordingly, with objective to minimize the total labor cost (linearly related to work time) incurred by both regular registered nurses (RRNs) and part-time nurses (PTNs). As a significant constraint, we balance RRNs’ total amount of work time with residents’ total service need for every considered shift. Besides, we restrict feasible shift schedules based on common scheduling practice. We conduct a series of computational experiments to validate the proposed model. We discuss our optimal solutions under different compositions of residents in terms of their disabilities. In addition, we compare the total labor costs and an RRN scheduling flexibility index with the given optimal solution under different combinations of RRNs and PTNs. Our analysis offers an operational approach to set the minimum number of nurses on flexible shift schedules to cover uncertain the service needs while maintaining a minimum labor cost.more » « less