skip to main content

Title: Uncertainty Cost of Stochastic Producers: Metrics and Impacts on Power Grid Flexibility
The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage robust SCUC, one through a fixed and the other via an adjustable uncertainty set, for which the state-of-the-art techniques may not be always feasible, efficient, and practical. To address these concerns and to account for the effects of the uncertainty cost resulting from dispatch limitations of flexible resources, a new framework centered on the adjustable penetration of stochastic generation is proposed. Our hypothesis is that if the SCUC is scheduled with an appropriate dispatch level of stochastic generation, the system uncertainty cost will decrease, and subsequently, the system's ability to accommodate additional uncertainty will improve. Numerical simulations on a modified IEEE 73-bus test system verify the efficiency of the more » suggested assessment techniques. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE transactions on engineering management
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. As the level of uncertain renewable capacity increases on power systems worldwide, industrial and academic researchers alike are seeking a scalable, transparent, effective approach to unit commitment under uncertainty. This paper presents a statistical ranking methodology that allows adaptive robust stochastic unit commitment using a modular structure, with much-needed flexibility. Specifically, this work describes a bus ranking methodology that identifies the most critical buses based on a worst-case metric. An important innovation is the ability to identify alternative metrics on which to rank the uncertainty set -- for example to minimize economic dispatch cost or ramping needs, to provide amore »customized robust unit commitment solution. Compared to traditional robust unit commitment models, the proposed model combines statistical tools with analytical framework of power system networks. The resulting formulation is easily implementable and customizable to the needs of the system operator. The method and its applications are validated against other established approaches, showing equivalent solution to the state-of-the-art approach. Case studies were conducted on the IEEE-30, IEEE-118 and pegase-1354 networks. In addition, the flexibility of bus ranking formulation is illustrated through implementation of alternative definitions of worst-case metrics. Results show that the bus ranking method performs as well as the best of these methods, with the provision of additional flexibility.« less
  2. Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design tomore »address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO).« less
  3. In this paper, we study a nursing home staff schedule optimization problem under resident demand uncertainty. We formulate a two-stage stochastic binary program accordingly, with objective to minimize the total labor cost (linearly related to work time) incurred by both regular registered nurses (RRNs) and part-time nurses (PTNs). As a significant constraint, we balance RRNs’ total amount of work time with residents’ total service need for every considered shift. Besides, we restrict feasible shift schedules based on common scheduling practice. We conduct a series of computational experiments to validate the proposed model. We discuss our optimal solutions under different compositionsmore »of residents in terms of their disabilities. In addition, we compare the total labor costs and an RRN scheduling flexibility index with the given optimal solution under different combinations of RRNs and PTNs. Our analysis offers an operational approach to set the minimum number of nurses on flexible shift schedules to cover uncertain the service needs while maintaining a minimum labor cost.« less
  4. There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these pricesmore »via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables.« less
  5. Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according tomore »the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance.« less