skip to main content


Title: Optimal Nursing Home Shift Scheduling: A Two-Stage Stochastic Programming Approach
In this paper, we study a nursing home staff schedule optimization problem under resident demand uncertainty. We formulate a two-stage stochastic binary program accordingly, with objective to minimize the total labor cost (linearly related to work time) incurred by both regular registered nurses (RRNs) and part-time nurses (PTNs). As a significant constraint, we balance RRNs’ total amount of work time with residents’ total service need for every considered shift. Besides, we restrict feasible shift schedules based on common scheduling practice. We conduct a series of computational experiments to validate the proposed model. We discuss our optimal solutions under different compositions of residents in terms of their disabilities. In addition, we compare the total labor costs and an RRN scheduling flexibility index with the given optimal solution under different combinations of RRNs and PTNs. Our analysis offers an operational approach to set the minimum number of nurses on flexible shift schedules to cover uncertain the service needs while maintaining a minimum labor cost.  more » « less
Award ID(s):
1825725
NSF-PAR ID:
10192192
Author(s) / Creator(s):
Date Published:
Journal Name:
CASE 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ghate, A ; Krishnaiyer, K. ; Paynabar, K. (Ed.)
    Maintaining an appropriate staffing level is essential to providing a healthy workplace environment at nursing homes and ensuring quality care among residents. With the widespread Covid-19 pandemic, staff absenteeism frequently occurs due to mandatory quarantine and providing care to their inflicted family members. Even though some of the staff show up for work, they may have to perform additional pandemic-related protection duties. In combination, these changes lead to an uncertain reduction in the quantity of care each staff member able to provide in a future shift. To alleviate the staff shortage concern and maintain the necessary care quantity, we study the optimal shift scheduling problem for a skilled nursing facility under probabilistic staff shortage in the presence of pandemic-related service provision disruptions. We apply a two-stage stochastic programming approach to our study. Our objective is to assign staff (i.e., certified nursing aids) to shifts to minimize the total staffing cost associated with contract staff workload, the adjusted workload for the changing resident demand, and extra workload due to required sanitization. Thus, the uncertainties considered arise from probabilistic staff shortage in addition to resident service need fluctuation. We model the former source of uncertainty with a geometric random variable for each staffer. In a proof-of-the-concept study, we consider realistic COVID-19 pandemic response measures recommended by the Indiana state government. We extract payment parameter estimates from the COVID-19 Nursing Home Dataset publicly available by the Centers for Medicare and Medicaid Services (CMS). We conclude with our numerical experiments that when a skilled nursing facility is at low risk of the pandemic, the absenteeism rate and staff workload increase slightly, thus maintaining the current staffing level can still handle the service disruptions. On the other hand, under high-risk circumstances, with the sharp increase of the absence rate and workload, a care facility likely needs to hire additional full-time staff as soon as possible. Our research offers insights into staff shift scheduling in the face of uncertain staff shortages and service disruption due to pandemics and prolonged disasters. 
    more » « less
  2. Given a spatial network and a set of service centers from k different resource types, a Multiple Resource Network Voronoi Diagram (MRNVD) partitions the spatial network into a set of Service Areas that can minimize the total cycle-distances of graph-nodes to allotted k service centers with different resource types. The MRNVD problem is important for critical societal applications such as assigning essential survival supplies (e.g., food, water, gas, and medical assistance) to residents impacted by man-made or natural disasters. The MRNVD problem is NP-hard; it is computationally challenging due to the large size of the transportation network. Previous work proposed the Distance bounded Pruning (DP) approach to produce an optimal solution for MRNVD. However, we found that DP can be generalized to reduce the computational cost for the minimum cycle-distance. In this paper, we extend our prior work and propose a novel approach that reduces the computational cost. Experiments using real-world datasets from five different regions demonstrate that the proposed approach creates MRNVD and significantly reduces the computational cost. 
    more » « less
  3. In this paper, we consider an integrated vehicle routing and service scheduling problem for serving customers in distributed locations who need pick-up, drop-off, or delivery services. We take into account the random trip time, nonnegligible service time, and possible customer cancellations, under which an ill-designed schedule may lead to undesirable vehicle idleness and customer waiting. We build a stochastic mixed-integer program to minimize the operational cost plus expected penalty cost of customers’ waiting time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service requests, we develop K-means clustering-based algorithms to dynamically update planned routes and schedules. The algorithms assign customers to vehicles based on similarities and then plan schedules on each vehicle separately. We conduct numerical experiments based on diverse instances generated from census data and data from the Ford Motor Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample and out-of-sample performance of different approaches. Managerial insights are provided using numerical results based on different parameter choices and uncertainty settings. 
    more » « less
  4. Purpose Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT. Design/methodology/approach A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands. Findings The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s. Research limitations/implications Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic. Practical implications The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time. Originality/value A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions. 
    more » « less
  5. Emerging on-demand service platforms (OSPs) have recently embraced teamwork as a strategy for stimulating workers’ productivity and mediating temporal supply and demand imbalances. This research investigates the team contest scheme design problem considering work schedules. Introducing teams on OSPs creates a hierarchical single-leader multi-follower game. The leader (platform) establishes rewards and intrateam revenue-sharing rules for distributing workers’ payoffs. Each follower (team) competes with others by coordinating the schedules of its team members to maximize the total expected utility. The concurrence of interteam competition and intrateam coordination causes dual effects, which are captured by an equilibrium analysis of the followers’ game. To align the platform’s interest with workers’ heterogeneous working-time preferences, we propose a profit-maximizing contest scheme consisting of a winner’s reward and time-varying payments. A novel algorithm that combines Bayesian optimization, duality, and a penalty method solves the optimal scheme in the nonconvex equilibrium-constrained problem. Our results indicate that teamwork is a useful strategy with limitations. Under the proposed scheme, team contest always benefits workers. Intrateam coordination helps teams strategically mitigate the negative externalities caused by overcompetition among workers. For the platform, the optimal scheme can direct teams’ schedules toward more profitable market equilibria when workers have inaccurate perceptions of the market. History: This paper has been accepted for the Service Science Special Issue on Innovation in Transportation-Enabled Urban Services. Funding: This work was supported by the National Science Foundation [Grant FW-HTF-P 2222806]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/serv.2023.0320 . 
    more » « less