Nursing homes (NHs) are critical facilities for caring frail older adults with around-the-clock formal care and personal assistance. To ensure quality of care for NH residents, an adequate staffing level is of great importance. Current NH staffing practice is mainly based on experience and regulation. The objective of this paper is to investigate the viability of experience-based and regulation-based strategies, as well as alternative staffing strategies to meet the heterogeneous service demand of NH residents at reduced labor cost under various scenarios of census compositions. We propose a predictive analytics integrated computer simulation model to characterize the heterogeneous service demand of NH residents, and further evaluate and identify promising staffing strategies at the facility level. Specifically, we propose a predictive model based on latent survival analysis to characterize diverse length-of-stay (LOS) with multiple discharge dispositions among NH residents. Further, we develop a simulation model with the incorporation of predictive analytics and domain knowledge to characterize the heterogeneous service demand of NH residents on different types of caregivers over time. Based on the simulation model, we develop a graphical user interface for the simulator to evaluate different staffing strategies at the facility level and inform NH administrators about promising strategies. We use real NH data to validate the proposed model and demonstrate its effectiveness. The proposed predictive LOS model considering multiple discharge dispositions exhibits superior prediction performance and offers better staffing decisions at reduced costs than those without the consideration. With the improved modeling fidelity via integrating predictive analytics with computer simulation, the proposed model is flexible to evaluate various staffing strategies using total labor cost as a performance metric, and can identify promising staffing strategies to meet the service demand of NH residents. Promising staffing strategies with the suggested staff-to-resident (SR) ratio can significantly reduce the total labor cost of multiple types of caregivers, as compared to the benchmark strategies, such as the SR ratios based on industrial practice or minimum requirement of state regulation. Moreover, we construct multiple scenarios of different census compositions of NH residents to demonstrate the capability of the proposed model. Our proposed model can facilitate NH staffing decision making to meet the heterogeneous service demand of NH residents at reduced labor costs.
more »
« less
Optimal Nursing Home Shift Scheduling: A Two-Stage Stochastic Programming Approach
In this paper, we study a nursing home staff schedule optimization problem under resident demand uncertainty. We formulate a two-stage stochastic binary program accordingly, with objective to minimize the total labor cost (linearly related to work time) incurred by both regular registered nurses (RRNs) and part-time nurses (PTNs). As a significant constraint, we balance RRNs’ total amount of work time with residents’ total service need for every considered shift. Besides, we restrict feasible shift schedules based on common scheduling practice. We conduct a series of computational experiments to validate the proposed model. We discuss our optimal solutions under different compositions of residents in terms of their disabilities. In addition, we compare the total labor costs and an RRN scheduling flexibility index with the given optimal solution under different combinations of RRNs and PTNs. Our analysis offers an operational approach to set the minimum number of nurses on flexible shift schedules to cover uncertain the service needs while maintaining a minimum labor cost.
more »
« less
- Award ID(s):
- 1825725
- PAR ID:
- 10192192
- Date Published:
- Journal Name:
- CASE 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ghate, A; Krishnaiyer, K.; Paynabar, K. (Ed.)Maintaining an appropriate staffing level is essential to providing a healthy workplace environment at nursing homes and ensuring quality care among residents. With the widespread Covid-19 pandemic, staff absenteeism frequently occurs due to mandatory quarantine and providing care to their inflicted family members. Even though some of the staff show up for work, they may have to perform additional pandemic-related protection duties. In combination, these changes lead to an uncertain reduction in the quantity of care each staff member able to provide in a future shift. To alleviate the staff shortage concern and maintain the necessary care quantity, we study the optimal shift scheduling problem for a skilled nursing facility under probabilistic staff shortage in the presence of pandemic-related service provision disruptions. We apply a two-stage stochastic programming approach to our study. Our objective is to assign staff (i.e., certified nursing aids) to shifts to minimize the total staffing cost associated with contract staff workload, the adjusted workload for the changing resident demand, and extra workload due to required sanitization. Thus, the uncertainties considered arise from probabilistic staff shortage in addition to resident service need fluctuation. We model the former source of uncertainty with a geometric random variable for each staffer. In a proof-of-the-concept study, we consider realistic COVID-19 pandemic response measures recommended by the Indiana state government. We extract payment parameter estimates from the COVID-19 Nursing Home Dataset publicly available by the Centers for Medicare and Medicaid Services (CMS). We conclude with our numerical experiments that when a skilled nursing facility is at low risk of the pandemic, the absenteeism rate and staff workload increase slightly, thus maintaining the current staffing level can still handle the service disruptions. On the other hand, under high-risk circumstances, with the sharp increase of the absence rate and workload, a care facility likely needs to hire additional full-time staff as soon as possible. Our research offers insights into staff shift scheduling in the face of uncertain staff shortages and service disruption due to pandemics and prolonged disasters.more » « less
-
Given a spatial network and a set of service centers from k different resource types, a Multiple Resource Network Voronoi Diagram (MRNVD) partitions the spatial network into a set of Service Areas that can minimize the total cycle-distances of graph-nodes to allotted k service centers with different resource types. The MRNVD problem is important for critical societal applications such as assigning essential survival supplies (e.g., food, water, gas, and medical assistance) to residents impacted by man-made or natural disasters. The MRNVD problem is NP-hard; it is computationally challenging due to the large size of the transportation network. Previous work proposed the Distance bounded Pruning (DP) approach to produce an optimal solution for MRNVD. However, we found that DP can be generalized to reduce the computational cost for the minimum cycle-distance. In this paper, we extend our prior work and propose a novel approach that reduces the computational cost. Experiments using real-world datasets from five different regions demonstrate that the proposed approach creates MRNVD and significantly reduces the computational cost.more » « less
-
In this paper, we consider an integrated vehicle routing and service scheduling problem for serving customers in distributed locations who need pick-up, drop-off, or delivery services. We take into account the random trip time, nonnegligible service time, and possible customer cancellations, under which an ill-designed schedule may lead to undesirable vehicle idleness and customer waiting. We build a stochastic mixed-integer program to minimize the operational cost plus expected penalty cost of customers’ waiting time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service requests, we develop K-means clustering-based algorithms to dynamically update planned routes and schedules. The algorithms assign customers to vehicles based on similarities and then plan schedules on each vehicle separately. We conduct numerical experiments based on diverse instances generated from census data and data from the Ford Motor Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample and out-of-sample performance of different approaches. Managerial insights are provided using numerical results based on different parameter choices and uncertainty settings.more » « less
-
Csikász-Nagy, Attila (Ed.)Which suggestions for behavioral modifications, based on mathematical models, are most likely to be followed in the real world? We address this question in the context of human circadian rhythms. Jet lag is a consequence of the misalignment of the body’s internal circadian (~24-hour) clock during an adjustment to a new schedule. Light is the clock’s primary synchronizer. Previous research has used mathematical models to compute light schedules that shift the circadian clock to a new time zone as quickly as possible. How users adjust their behavior when provided with these optimal schedules remains an open question. Here, we report data collected by wearables from more than 100 travelers as they cross time zones using a smartphone app, Entrain . We find that people rarely follow the optimal schedules generated through mathematical modeling entirely, but travelers who better followed the optimal schedules reported more positive moods after their trips. Using the data collected, we improve the optimal schedule predictions to accommodate real-world constraints. We also develop a scheduling algorithm that allows for the computation of approximately optimal schedules "on-the-fly" in response to disruptions. User burnout may not be critically important as long as the first parts of a schedule are followed. These results represent a crucial improvement in making the theoretical results of past work viable for practical use and show how theoretical predictions based on known human physiology can be efficiently used in real-world settings.more » « less
An official website of the United States government

