This article proposes a matrix auto-transformer switched-capacitor dc–dc converter to achieve a high voltage conversion ratio, high efficiency, and high power density for 48-V data-center applications. On the high-voltage side, the proposed converter can fully leverage the benefits of high-performance low voltage stress devices similar to the multilevel modular switched-capacitor converter. Compared with the traditional isolated LLC converter with a matrix transformer, the proposed solution utilized a matrix autotransformer concept with merged primary and secondary side windings, thus leading to reduced transformer winding loss. The resonant inductor could be integrated into the transformer similar to the LLC converter. Because of the matrix autotransformer design, it can achieve a current doubler rectifier on the low voltage side. For less than 8-V low output voltage application, the current doubler rectifier design can fully utilize the best figure-of-merit 25-V device, which is more efficient than the full-bridge rectifier solution using two 25-V devices during the operation. All the devices can achieve zero voltage switching or zero current switching and can be naturally clamped without additional clamping circuits. A 500-W 48-V to 6-V dc–dc converter hardware prototype has been developed with optimized device selection and integrated matrix autotransformer design. Both simulation and experiment results have been provided to validate the features and benefits of the proposed converter. The maximum efficiency of the proposed converter can reach 98.33%.
more »
« less
Two-Stage 48V-1V Hybrid Switched-Capacitor Point-of-Load Converter with 24V Intermediate Bus
This paper presents a 90.6% 48 V-1 V/150 A two-stage hybrid switched-capacitor point-of-load (PoL) converter with a 24 V intermediate bus. The first stage of the converter is a 2:1 resonant charge pump which converts the 48 V input voltage to 24 V. The second stage of the converter is a 24:1 four-phase series capacitor buck converter which is capable of delivering 150 A with two customized four-phase coupled inductor for vertical power delivery. The two-stage architecture combines the resonant switched-capacitor structure and the series capacitor buck configuration to achieve high efficiency, high power density, and voltage regulation. The effectiveness of the topology is verified by a 48 V-1 V/150 A prototype with a peak efficiency of 90.6% at 60 A and a full load efficiency of 86.2% at 150 A. The power density of the prototype is 283 W/in 3 .
more »
« less
- Award ID(s):
- 1847365
- PAR ID:
- 10212940
- Date Published:
- Journal Name:
- 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents two novel single-phase resonant multilevel modular boost inverters based on resonant switched capacitor cells and a partial power processed voltage regulator. Compared with other multilevel boost inverters applied in PV systems, one remarkable advantage of the proposed topologies is that the bulky AC filtering inductor is replaced by a smaller-size one in the partial power processed buck converter. Constant duty cycle PWM method is attractive for the multilevel inverter controller design. GaN Enhancement Mode Power Transistors help both the modular resonant switched capacitor cells and the full-bridge unfolder be realized in a small size with high power density. The clamp capacitors in the resonant switched capacitor cells effectively alleviate the switch voltage spikes. These two inverter topologies are analyzed and simulated in PLECS. Simulation results verify the validity of boost inverter function. Stress analysis shows that the inverter has relatively small total normalized switch conduction power stress and total normalized switch stress ratio. Relative total semiconductor chip area comparison results reflect that the proposed topology achieves more efficient semiconductor utilization compared with typical non-resonant multilevel modular switched capacitor boost inverters. Test results indicate that the proposed topology can be used for single-phase non-isolated PV boost inverter applications with small ground leakage current, high voltage conversion ratio, small volume and potential high efficiency.more » « less
-
This article proposes a predictive modulation scheme for a differential mode resonant switched capacitor rectifier (DMRSCR) to achieve high efficiency and power factor correction (PFC) for wide voltage gain. The modulation scheme ensures extensive zero-voltage switching (ZVS) turn-ON on all the switches under varying sinusoidal input voltage without requiring additional circuits or sensors. Four key control parameters, namely, phase shift ratio, duty cycle ratios, and switching frequency, are controlled for the converter to maintain ZVS turn-ON, PFC, output voltage regulation, and reduced resonant inductor current ripple. The article outlines a detailed DMRSCR model to deduce the dependency of the four control and converter design parameters on the converter operation. Based on the model, a complete converter design process is provided. A DMRSCR prototype rated at 1.1 kW was built using the underscored design methodology to validate the proposed modulation scheme, reaching a peak efficiency of 98.27%more » « less
-
This paper describes the topology, fundamental operations, and key characteristics of a Dual-Phase Multi-Inductor Hybrid (DP-MIH) Converter for Point of Load (POL) telecommunication and data center applications. The circuit topology employs a unique configuration of switched-inductor and capacitor pairs to achieve complete soft charging and native voltage balancing of flying capacitors regardless of mismatches and variations in capacitor and inductor values. The converter topology and its operation are verified by a five-level DP-MIH converter prototype capable of delivering maximum load of 100A at 1V-5V regulated output voltages from a 48V input supply. It achieves 90.9% peak efficiency and 440 w/in3 power density for 48V-to-1V conversion and 95.3% and 2200W/in3 for a 48V-to-5V conversion.more » « less
-
Multiphase Control for Robust and Complete Soft-charging Operation of Dual Inductor Hybrid ConverterThis paper presents a new Multiphase Dual Inductor Hybrid (MP-DIH) Converter for application in data center and telecommunication systems. The converter is based on addition of two output filter inductors to a Dickson switched-capacitor converter. The inductors are operated in multiple phases that are non-overlapped and evenly distributed over one switching cycle, completely soft-charging all flying capacitors even in the presence of practical capacitor mismatches and voltage ripples. In this converter operation, each branch of the switched-capacitor network is activated individually in one charging phase, and two interleaved inductors are employed to softly charge and discharge the capacitors to achieve high efficiency without any complex capacitor sizing or split phase operation. To verify the topology and its soft-charging advantages, a 48V-to-1.8V 20W experimental converter prototype is constructed. The converter achieves 92.4% peak efficiency for 40V-to-1.8V conversion and 92.1% peak efficiency for 48V-to-1.8V conversion at 4A load, and with 20% capacitance variations.more » « less
An official website of the United States government

