This paper develops a two-step procedure for commercial buildings to optimize the frequency regulation service provision by leveraging the heating, ventilation, and air conditioning (HVAC) systems. Both day-ahead and real-time operations of the HVAC system are simulated by using a typical commercial building's model, the PJM market prices, and dynamic regulation signals. The simulation results show that it is beneficial for buildings to provide dynamic regulation services where the capacity reserved for regulation up and down are the same. The mean reverting characteristic of the dynamic regulation signal enables commercial buildings to increase regulation capacity with minimal impact on the comfort level of occupants. The proposed frequency regulation provisioning scheme yields a high performance score (>0.9). The simulation results also reveal that there exists a trade-off between frequency regulation performance and climate control performance of the building. Finally, the economic benefits of frequency regulation provisions of commercial buildings are analyzed.
more »
« less
Data-Driven Capacity Bidding for Frequency Regulation
Frequency regulation is crucial for balancing the supply and demand of modern electricity grids. To provide regulation services, it is important to understand the capability of flexible resources to track regulation signals. This paper studies the problem of submitting capacity bids to a forward regulation market based on historical regulation signals. We consider an aggregator who manages a group of flexible resources with linear dynamic constraints. He seeks to find the optimal capacity bid, so that real-time regulation signals can be followed with an arbitrary guaranteed probability. We formulate this problem as a chance-constrained program with unknown regulation signal distributions. A sampling and discarding algorithm is proposed. It provably provides near-optimal solutions at a guaranteed probability of success without knowing the distribution of the regulation signals. This result holds for resources with arbitrary linear dynamics and allows arbitrary intra-hour data correlations. We validate the proposed algorithm with real data via numerical simulations. Two cases are studied: (1) CAISO market, where providers separately submit capacity estimates for regulation up and regulation down signals, (2) PJM market, where regulation up and down capacities are the same. Simulation results show that the proposed algorithm provides near-optimal capacity estimates for both cases.
more »
« less
- Award ID(s):
- 1646612
- PAR ID:
- 10213780
- Date Published:
- Journal Name:
- 2019 American Control Conference (ACC)
- Page Range / eLocation ID:
- 3901 to 3908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A two-part tariff is a pricing scheme that consists of an up-front lump sum fee and a per unit fee. Various products in the real world are sold via a menu, or list, of two-part tariffs---for example gym memberships, cell phone data plans, etc. We study learning high-revenue menus of two-part tariffs from buyer valuation data, in the setting where the mechanism designer has access to samples from the distribution over buyers' values rather than an explicit description thereof. Our algorithms have clear direct uses, and provide the missing piece for the recent generalization theory of two-part tariffs. We present a polynomial time algorithm for optimizing one two-part tariff. We also present an algorithm for optimizing a length-L menu of two-part tariffs with run time exponential in L but polynomial in all other problem parameters. We then generalize the problem to multiple markets. We prove how many samples suffice to guarantee that a two-part tariff scheme that is feasible on the samples is also feasible on a new problem instance with high probability. We then show that computing revenue-maximizing feasible prices is hard even for buyers with additive valuations. Then, for buyers with identical valuation distributions, we present a condition that is sufficient for the two-part tariff scheme from the unsegmented setting to be optimal for the market-segmented setting. Finally, we prove a generalization result that states how many samples suffice so that we can compute the unsegmented solution on the samples and still be guaranteed that we get a near-optimal solution for the market-segmented setting with high probability.more » « less
-
Dispatching a large fleet of distributed energy resources (DERs) in response to wholesale energy market or regional grid signals requires solving a challenging disaggregation problem when the DERs are located within a distribution network. This manuscript presents a computationally tractable convex inner approximation for the optimal power flow (OPF) problem that characterizes a feeders aggregate DERs hosting capacity and enables a realtime, grid-aware dispatch of DERs for radial distribution networks. The inner approximation is derived by considering convex envelopes on the nonlinear terms in the AC power flow equations. The resulting convex formulation is then used to derive provable nodal injection limits, such that any combination of DER dispatches within their respective nodal limits is guaranteed to be AC admissible. These nodal injection limits are then used to construct a realtime, open-loop control policy for dispatching DERs at each location in the network to collectively deliver grid services. The IEEE-37 distribution network is used to validate the technical results and highlight various use-cases.more » « less
-
Abstract We develop a new market‐making model, from the ground up, which is tailored toward high‐frequency trading under a limit order book (LOB), based on the well‐known classification of order types in market microstructure. Our flexible framework allows arbitrary order volume, price jump, and bid‐ask spread distributions as well as the use of market orders. It also honors the consistency of price movements upon arrivals of different order types. For example, it is apparent that prices should never go down on buy market orders. In addition, it respects the price‐time priority of LOB. In contrast to the approach of regular control on diffusion as in the classical Avellaneda and Stoikov (Quantitative Finance, 8, 217, 2008) market‐making framework, we exploit the techniques of optimal switching and impulse control on marked point processes, which have proven to be very effective in modeling the order book features. The Hamilton‐Jacobi‐Bellman quasi‐variational inequality (HJBQVI) associated with the control problem can be solved numerically via finite‐difference method. We illustrate our optimal trading strategy with a full numerical analysis, calibrated to the order book statistics of a popular exchanged‐traded fund (ETF). Our simulation shows that the profit of market‐making can be severely overstated under LOBs with inconsistent price movements.more » « less
-
Service provisioning can be enhanced with spectrally spatially flexible optical networks (SS-FONs) with multicore fibers; however, intercore crosstalk (XT) is a dominant impairment that complicates the problem of maintaining the quality of transmission (QoT) and resource allocation. The selection of modulation formats (MFs), due to their unique XT sensitivities, further increases the complexity. The routing, modulation, core, and spectrum assignment (RMCSA) problem must select the resources carefully to exploit the available capacity while meeting the desired QoT. In this paper, we propose an RMCSA algorithm called the tridental resource assignment (TRA) algorithm for transparent SS-FONs, and its variant, translucency-aware TRA (TaTRA), for translucent SS-FONs. TRA balances three different factors that affect network performance under dynamic resource allocation. We consider translucent networks with flexible regeneration and with and without modulation and spectrum conversion. Our resource assignment approach includes both an offline network planning component to calculate path priorities and an online/dynamic provisioning component to allocate resources. Extensive simulation experiments performed in realistic network scenarios indicate that TRA and TaTRA significantly reduce the bandwidth blocking probability by several orders of magnitude in some cases.more » « less
An official website of the United States government

