Abstract MnBi 2 Te 4 /(Bi 2 Te 3 ) n materials system has recently generated strong interest as a natural platform for the realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic (FM) MnBi 2 Te 4 /(Bi 2 Te 3 ) n it is found that migration of Mn between MnBi 2 Te 4 septuple layers (SLs) and otherwise non-magnetic Bi 2 Te 3 quintuple layers (QLs) has systemic consequences—it induces FM coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation ( n ≳ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wave functions and a change of the surface band structure as compared to the ideal MnBi 2 Te 4 /(Bi 2 Te 3 ) n . These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets.
more »
« less
High-pressure and low-temperature structural study of claudetite I, a monoclinic layered As 2 O 3 polymorph
High-pressure structural studies of claudetite I reveal that it exhibits the lowest As coordination numbers despite being the densest As 2 O 3 polymorph.
more »
« less
- Award ID(s):
- 1834750
- PAR ID:
- 10214882
- Date Published:
- Journal Name:
- CrystEngComm
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1466-8033
- Page Range / eLocation ID:
- 638 to 644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This Review highlights basic and transition metal conducting and semiconducting oxides. We discuss their material and electronic properties with an emphasis on the crystal, electronic, and band structures. The goal of this Review is to present a current compilation of material properties and to summarize possible uses and advantages in device applications. We discuss Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , SnO 2 , ZnO, CdO, NiO, CuO, and Sc 2 O 3 . We outline the crystal structure of the oxides, and we present lattice parameters of the stable phases and a discussion of the metastable polymorphs. We highlight electrical properties such as bandgap energy, carrier mobility, effective carrier masses, dielectric constants, and electrical breakdown field. Based on literature availability, we review the temperature dependence of properties such as bandgap energy and carrier mobility among the oxides. Infrared and Raman modes are presented and discussed for each oxide providing insight into the phonon properties. The phonon properties also provide an explanation as to why some of the oxide parameters experience limitations due to phonon scattering such as carrier mobility. Thermal properties of interest include the coefficient of thermal expansion, Debye temperature, thermal diffusivity, specific heat, and thermal conductivity. Anisotropy is evident in the non-cubic oxides, and its impact on bandgap energy, carrier mobility, thermal conductivity, coefficient of thermal expansion, phonon modes, and carrier effective mass is discussed. Alloys, such as AlGaO, InGaO, (Al x In y Ga 1− x− y ) 2 O 3 , ZnGa 2 O 4 , ITO, and ScGaO, were included where relevant as they have the potential to allow for the improvement and alteration of certain properties. This Review provides a fundamental material perspective on the application space of semiconducting oxide-based devices in a variety of electronic and optoelectronic applications.more » « less
-
Abstract The starting point for this work was a set of crystal structures containing the motif of interaction between methyl groups in homodimers. Two structures were selected for which QTAIM, NCI and NBO analyses suggested an attractive interaction. However, the calculated interaction energy was negative for only one of these systems. The ability of methyl groups to interact with one another is then examined by DFT calculations. A series of (CH3PnHCH3)2homodimers were allowed to interact with each other for a range of Pn atoms N, P, As, and Sb. Interaction energies of these C⋅⋅⋅C tetrel‐bonded species were below 1 kcal/mol, but could be raised to nearly 3 kcal/mol if the C atom was changed to a heavier tetrel. A strengthening of the C⋅⋅⋅C intermethyl bonds can also be achieved by introducing an asymmetry via an electron‐withdrawing substituent on one unit and a donor on the other. The attractions between the methyl and related groups occur in spite of a coulombic repulsion between σ‐holes on the two groups. NBO, AIM, and NCI tools must be interpreted with caution as they can falsely suggest bonding when the potentials are repulsive.more » « less
-
Abstract We report the facile and efficient synthesis of common electrophilic haloboranes via a protonolysis reaction between Piers’ borane, HB(C6F5)2, and H−X (X=Cl, Br). This route benefits from fast reaction times, easy setup, and minimal workup to yield the analytically pure etherates, (C6F5)2BCl(OEt2) (1) and (C6F5)2BBr(OEt2) (2), as well as the ether‐free tri‐coordinate species, (C6F5)2BBr (3).more » « less
-
Abstract Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (c-CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading to acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains.more » « less
An official website of the United States government

