Abstract Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally. 
                        more » 
                        « less   
                    
                            
                            Shared Numerosity Representations Across Formats and Tasks Revealed with 7 Tesla fMRI: Decoding, Generalization, and Individual Differences in Behavior
                        
                    
    
            Abstract Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes. Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6, and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources are shared between formats. Generalization was also successful across tasks where participants either identified or compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance on a number comparison task completed outside of the scanner, but generalization between formats and across tasks negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in representational specificity within format and task contexts relate to mathematical expertise. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10215033
- Date Published:
- Journal Name:
- Cerebral Cortex Communications
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2632-7376
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity among a distributed set of brain regions is associated with children’s math skills. Therefore, in the present study we use connectome-based predictive modeling to investigate whether functional connectivity during numerical processing and at rest “predicts” children’s math skills (N = 31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison and rest, but not during nonsymbolic number comparison, predicts children’s math skills. Each task revealed a largely distinct set of predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were negatively correlated with children’s math skills so that weaker connectivity predicted better math skills. Notably, these predictive connections were largely nonoverlapping across task states, suggesting children’s math abilities may depend on state-dependent patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond brain–behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.more » « less
- 
            null (Ed.)Author Summary Previous studies of local activity levels suggest that both shared and distinct neural mechanisms support the processing of symbolic (Arabic digits) and nonsymbolic (dot sets) number stimuli, involving regions distributed across frontal, temporal, and parietal cortices. Network-level characterizations of functional connectivity patterns underlying number processing have gone unexplored, however. In this study we examined the whole-brain functional architecture of symbolic and nonsymbolic number comparison. Stronger community membership was observed among auditory regions during symbolic processing, and among cingulo-opercular/salience and basal ganglia networks for nonsymbolic. A dual versus unified fronto-parietal/dorsal attention community organization was observed for symbolic and nonsymbolic formats, respectively. Finally, the inferior temporal gyrus and left intraparietal sulcus, both thought to be preferentially involved in processing number symbols, demonstrated robust differences in community membership between formats.more » « less
- 
            We explored neural processing differences associated with aging across four cognitive functions. In addition to ERP analysis, we included task-related microstate analyses, which identified stable states of neural activity across the scalp over time, to explore whole-head neural activation differences. Younger and older adults (YA, OA) completed face perception (N170), word-pair judgment (N400), visual oddball (P3), and flanker (ERN) tasks. Age-related effects differed across tasks. Despite age-related delayed latencies, N170 ERP and microstate analyses indicated no age-related differences in amplitudes or microstates. However, age-related condition differences were found for P3 and N00 amplitudes and scalp topographies: smaller condition differences were found for in OAs as well as broader centroparietal scalp distributions. Age group comparisons for the ERN revealed similar focal frontocentral activation loci, but differential activation patterns. Our findings of differential age effects across tasks are most consistent with the STAC-r framework which proposes that age-related effects differ depending on the resources available and the kinds of processing and cognitive load required of various tasks.more » « less
- 
            Abstract Early mathematical development is thought to depend on visuospatial processing, yet neural evidence for this relationship in young children has been limited. We examined the neural mechanisms supporting numerical and visuospatial processing in 4- to 8-year-old children and adults using functional magnetic resonance imaging (fMRI), with three tasks: numerical matching, geometric shape matching, and number line estimation. We found that specialization for numerical and geometric processing in parietal cortex exists by 4–8 years of age, and that children exhibited greater conjunctive activation between numerical and geometric tasks throughout the parietal cortex compared to adults. During the number line task, children’s neural activity significantly overlapped with activity from both number and geometric shape matching tasks, whereas adults’ activity only overlapped with the number task. These findings provide the first neural evidence that number line estimation relies on both numerical and geometric processing in children, whereas it depends primarily on number-specific processing in adults.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    