skip to main content


Title: Chemically driven superstructural ordering leading to giant unit cells in unconventional clathrates Cs 8 Zn 18 Sb 28 and Cs 8 Cd 18 Sb 28
The unconventional clathrates, Cs 8 Zn 18 Sb 28 and Cs 8 Cd 18 Sb 28 , were synthesized and reinvestigated. These clathrates exhibit unique and extensive superstructural ordering of the clathrate-I structure that was not initially reported. Cs 8 Cd 18 Sb 28 orders in the Ia 3̄ d space group (no. 230) with 8 times larger volume of the unit cell in which most framework atoms segregate into distinct Cd and Sb sites. The structure of Cs 8 Zn 18 Sb 28 is much more complicated, with an 18-fold increase of unit cell volume accompanied by significant reduction of symmetry down to P 2 (no. 3) monoclinic space group. This structure was revealed by a combination of synchrotron X-ray diffraction and electron microscopy techniques. A full solid solution, Cs 8 Zn 18−x Cd x Sb 28 , was also synthesized and characterized. These compounds follow Vegard's law in regard to their primitive unit cell sizes and melting points. Variable temperature in situ synchrotron powder X-ray diffraction was used to study the formation and melting of Cs 8 Zn 18 Sb 28 . Due to the heavy elements comprising clathrate framework and the complex structural ordering, the synthesized clathrates exhibit ultralow thermal conductivities, all under 0.8 W m −1 K −1 at room temperature. Cs 8 Zn 9 Cd 9 Sb 28 and Cs 8 Zn 4.5 Cd 13.5 Sb 28 both have total thermal conductivities of 0.49 W m −1 K −1 at room temperature, among the lowest reported for any clathrate. Cs 8 Zn 18 Sb 28 has typical p-type semiconducting charge transport properties, while the remaining clathrates show unusual n–p transitions or sharp increases of thermopower at low temperatures. Estimations of the bandgaps as activation energy for resistivity dependences show an anomalous widening and then shrinking of the bandgap with increasing Cd-content.  more » « less
Award ID(s):
1834750
NSF-PAR ID:
10215047
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
37
ISSN:
2041-6520
Page Range / eLocation ID:
10255 to 10264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca are isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K. 
    more » « less
  2. Abstract

    The compositional screening of K‐Zn‐Sb ternary system aided by machine learning, rapid exploratory synthesis using KH salt‐like precursor and in situ powder X‐ray diffraction yielded a novel clathrate type XI K58Zn122Sb207. This clathrate consists of a 3D Zn‐Sb framework hosting K+ions inside polyhedral cages, some of which are reminiscent of known clathrate types while others are unique to this structure type. The complex non‐centrosymmetric structure in the tetragonal space groupwas solved by means of single crystal X‐ray diffraction as a 6‐component twin due to pseudocubic symmetry and further confirmed by high‐resolution synchrotron powder X‐ray diffraction and state‐of‐the‐art scanning transmission electron microscopy. The electron‐precise composition of this clathrate yields narrow‐gapp‐type semiconductor with extraordinarily low thermal conductivity due to displacement or “rattling” of K cations inside oversized cages and as well as to twinning, stacking faults and antiphase boundary defects.

     
    more » « less
  3. Abstract

    The compositional screening of K‐Zn‐Sb ternary system aided by machine learning, rapid exploratory synthesis using KH salt‐like precursor and in situ powder X‐ray diffraction yielded a novel clathrate type XI K58Zn122Sb207. This clathrate consists of a 3D Zn‐Sb framework hosting K+ions inside polyhedral cages, some of which are reminiscent of known clathrate types while others are unique to this structure type. The complex non‐centrosymmetric structure in the tetragonal space groupwas solved by means of single crystal X‐ray diffraction as a 6‐component twin due to pseudocubic symmetry and further confirmed by high‐resolution synchrotron powder X‐ray diffraction and state‐of‐the‐art scanning transmission electron microscopy. The electron‐precise composition of this clathrate yields narrow‐gapp‐type semiconductor with extraordinarily low thermal conductivity due to displacement or “rattling” of K cations inside oversized cages and as well as to twinning, stacking faults and antiphase boundary defects.

     
    more » « less
  4. Abstract

    Here, the combination of theoretical computations followed by rapid experimental screening and in situ diffraction studies is demonstrated as a powerful strategy for novel compounds discovery. When applied for the previously “empty” Na−Zn−Bi system, such an approach led to four novel phases. The compositional space of this system was rapidly screened via the hydride route method and the theoretically predicted NaZnBi (PbClF type,P4/nmm) and Na11Zn2Bi5(Na11Cd2Sb5type,P) phases were successfully synthesized, while other computationally generated compounds on the list were rejected. In addition, single crystal X‐ray diffraction studies of NaZnBi indicate minor deviations from the stoichiometric 1 : 1 : 1 molar ratio. As a result, two isostructural (PbClF type,P4/nmm) Zn‐deficient phases with similar compositions, but distinctly different unit cell parameters were discovered. The vacancies on Zn sites and unit cell expansion were rationalized from bonding analysis using electronic structure calculations on stoichiometric “NaZnBi”.In‐situsynchrotron powder X‐ray diffraction studies shed light on complex equilibria in the Na−Zn−Bi system at elevated temperatures. In particular, the high‐temperature polymorphHT‐Na3Bi (BiF3type,Fmm) was obtained as a product of Na11Zn2Bi5decomposition above 611 K.HT‐Na3Bi cannot be stabilized at room temperature by quenching, and this type of structure was earlier observed in the high‐pressure polymorphHP‐Na3Bi above 0.5 GPa. The aforementioned approach of predictive synthesis can be extended to other multinary systems.

     
    more » « less
  5. Abstract

    A new compound NaCd4Sb3(Rm,a=4.7013(1) Å,c=35.325(1), Å, Z=3,T=100 K) featuring the RbCd4As3structure type has been discovered in the Na−Cd−Sb system, in addition to the previously reported NaCdSb phase. NaCd4Sb3and NaCdSb were herein synthesized using sodium hydride as the source of sodium. The hydride method allows for targeted sample composition, improved precursor mixing, and an overall quicker synthesis time when compared to traditional methods using Na metal as a precursor. The NaCd4Sb3structure was determined from single‐crystal X‐ray diffraction and contained the splitting of a Cd site not seen in previous isostructural phases. NaCd4Sb3decomposes into NaCdSb plus melt at 766 K, as determined viain‐situhigh‐temperature PXRD. The electronic structure calculations predict the NaCd4Sb3phase to be semi‐metallic, which compliments the measured thermoelectric property data, indicative of ap‐type semi‐metallic material. The crystal structure, elemental analysis, thermal properties, and electronic structure are herein discussed in further detail.

     
    more » « less