skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities
Phase separation dynamics of oil from swollen elastomers in a wetting ridge depends on oil viscosity and swelling ratio, which changes for early and late stages of wetting.  more » « less
Award ID(s):
2326933
PAR ID:
10564700
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
Volume:
20
Issue:
36
ISSN:
1744-683X
Page Range / eLocation ID:
7300 to 7312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop original flow-based methods to interrogate and manipulate out-of-equilibrium behaviour of ternary fluids systems at the small scale. In particular, we examine droplet and jet formation of ternary fluid systems in coaxial microchannels when an aqueous phase is injected into a solvent-rich oil phase using common fluids, such as ethanol for the aqueous phase, silicone oil for the oil phase and isopropanol for the solvent. Alcohols are often employed to impart oil and water properties with a myriad of practical uses as extractants, antiseptics, wetting agents, emulsifiers or biofuels. Here, we systematically examine the role of alcohol solvents on the hydrodynamic stability of aqueous–oil multiphase flows in square microchannels. Broad variations of flow rates and solvent concentration reveal a variety of intriguing droplet and jet flow regimes in the presence of spontaneous emulsification phenomena and significant mass transfer across the fluid interface. Typical flow patterns include dripping and jetting droplets, phase inversion and dynamic wetting and conjugate jets. Functional relationships are developed to model the evolution of multiphase flow characteristics with solvent concentration. This work provides insights into complex natural phenomena relevant to the application of microfluidic droplet systems to chemical assays as well as fluid measurement and characterisation technologies. 
    more » « less
  2. Intermittent oil–water wetting can have a significant effect on the internal corrosion of steel pipelines. This paper presents a combined experimental and molecular modeling study of several influential factors on the surface properties and corrosion behavior of mild steel in CO2 environments. The influence of different model oils (LVT-200 and Aromatic-200) and select surface-active compounds (myristic acid, cyclohexane butyric acid, and oleic acid) on the corrosion behavior of carbon steel during intermittent oil–water wetting was determined by measuring the corrosion rate after intermittent wetting cycles. The interfacial tension measurements were performed to study the incorporation of the oil phase along with surface-active molecules in the protective layer formed on the specimen surface. Results showed that the interfacial tension for an aromatic oil–water interface is lower than that for an aliphatic oil–water interface. To understand this result, molecular dynamics simulations of oil–water interfaces were performed in the presence of surface-active molecules and different oils to analyze the structure of the layer formed at the interface. The simulations supported the hypothesis that aromatic molecules are less structured at the interface, which results in the incorporation of more water molecules into the protective layer formed at the steel surface, causing a higher corrosion rate. On the other hand, the simulations revealed that myristic acid in an aliphatic oil forms a well-aligned structure at the interface, devoid of any water molecules. This is in agreement with the hypothesis that the linear molecular structure of myristic acid favors the alignment of molecules at an aliphatic oil–water interface, resulting in a lower interfacial tension and more effective corrosion mitigation as compared to the other two nonlinear compounds tested. It is concluded that an important factor controlling the corrosion behavior is the molecular structure of the oil–water interface, which is adopted by the steel surface layer through the Langmuir–Blodgett process. 
    more » « less
  3. Abstract We present simulations of two-phase flow using the Rothman and Keller colour gradient Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous model initially filled with a “blue” fluid with different viscosity. We conducted eleven suites of 81 numerical experiments totalling 891 simulations, where each suite had a different random realization of the porous model and spanned viscosity ratios in the range$$M\in [0.01,100]$$ M [ 0.01 , 100 ] and wetting angles in the range$$\theta _w\in [180^\circ ,0^\circ ]$$ θ w [ 180 , 0 ] to allow us to study the effect of these parameters on the fluid-displacement morphology and saturation at breakthrough (sweep). Although sweep often increased with wettability, this was not always so and the sweep phase space landscape, defined as the difference in saturation at a given wetting angle relative to saturation for the non-wetting case, had hills, ridges and valleys. At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span the model. After breakthrough, the flow field continues to evolve and the saturation continues to increase albeit at a reduced rate, and eventually exceeds 90% for both non-wetting and wetting cases. The existence of a complicated sweep phase space at breakthrough, and continued post-breakthrough evolution suggests the hydrodynamics and sweep is a complicated function of wetting angle, viscosity ratio and time, which has major potential implications to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil reserves. Validation of these results via experiments is required to ensure they translate to field studies. 
    more » « less
  4. ABSTRACT In this study, 3 types of zwitterionic phospholipid biosurfactants LDP(S), CDP(S) and CTDP(S) were prepared from 3 different raw materials such as rapeseed oil, coconut oil and cottonseed oil respectively. The structure of the resulting phospholipid biosurfactants was elucidated by FT-IR, 1 H NMR and 13 C NMR spectroscopies and their interfacial properties have been examined such as CMC, static surface tension, wetting property, solution stability, and foam property. Interfacial property measurement and prescription test in cosmetic formulation prepared with the newly synthesized biosurfactants revealed that CDP(S) biosurfactant possesses excellent mildness and superior interfacial properties, indicating the potential applicability in cosmetic product formulations. 
    more » « less
  5. Abstract When a water drop is placed onto a soft polymer network, a wetting ridge develops at the drop periphery. The height of this wetting ridge is typically governed by the drop surface tension balanced by elastic restoring forces of the polymer network. However, the situation is more complex when the network is swollen with fluid, because the fluid may separate from the network at the contact line. Here we study the fluid separation and network deformation at the contact line of a soft polydimethylsiloxane (PDMS) network, swollen with silicone oil. By controlling both the degrees of crosslinking and swelling, we find that more fluid separates from the network with increasing swelling. Above a certain swelling, network deformation decreases while fluid separation increases, demonstrating synergy between network deformation and fluid separation. When the PDMS network is swollen with a fluid having a negative spreading parameter, such as hexadecane, no fluid separation is observed. A simple balance of interfacial, elastic, and mixing energies can describe this fluid separation behavior. Our results reveal that a swelling fluid, commonly found in soft networks, plays a critical role in a wetting ridge. 
    more » « less