Hyperdimensional computing (HDC) offers a singlepass learning system by imitating the brain-like signal structure. HDC data structure is in random hypervector format for better orthogonality. Similarly, in bit-stream processing – aka stochastic computing– systems, low-discrepancy (LD) sequences are used for the efficient generation of uncorrelated bit-streams. However, LD-based hypervector generation has never been investigated before. This work studies the utilization of LD Sobol sequences as a promising alternative for encoding hypervectors. The new encoding technique achieves highly-accurate classification with a single-time training step without needing to iterate repeatedly over random rounds. The accuracy evaluations in an embedded environment exhibit a classification rate improvement of up to 9.79% compared to the conventional random hypervector encoding.
more »
« less
Massively parallel ultrafast random bit generation with a chip-scale laser
Random numbers are widely used for information security, cryptography, stochastic modeling, and quantum simulations. Key technical challenges for physical random number generation are speed and scalability. We demonstrate a method for ultrafast generation of hundreds of random bit streams in parallel with a single laser diode. Spatiotemporal interference of many lasing modes in a specially designed cavity is introduced as a scheme for greatly accelerated random bit generation. Spontaneous emission, caused by quantum fluctuations, produces stochastic noise that makes the bit streams unpredictable. We achieve a total bit rate of 250 terabits per second with off-line postprocessing, which is more than two orders of magnitude higher than the current postprocessing record. Our approach is robust, compact, and energy-efficient, with potential applications in secure communication and high-performance computation.
more »
« less
- Award ID(s):
- 1953959
- PAR ID:
- 10215256
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 371
- Issue:
- 6532
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 948-952
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips.more » « less
-
Stochastic computing (SC) is a reemerging computing paradigm that oers low-cost and noise-resilient hardware designs for a variety of arithmetic functions. In SC, circuits operate on uniform bit-streams, where the value is encoded by the probability of observing ‘1’s in the stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. Some operations, such as minimum and maximum, require highly correlated inputs, whereas others like multiplication demand uncorrelated or statistically independent inputs for accurate results. Developing low-cost and accurate correlation manipulation circuits is critical, as they allow correlation management without incurring the high cost of bit-stream regeneration. This work introduces novel in-stream correlator and decorrelator circuits capable of: 1) adjusting correlation between stochastic bit-streams and 2) controlling the distribution of ‘1’s in the output bit-streams. Compared to state-of-the-art (SoA) approaches, our designs oer improved accuracy and reduced hardware overhead. The output bit-streams enjoy low-discrepancy (LD) distribution, leading to higher quality of results. To further increase the accuracy when dealing with pseudo-random inputs, we propose an enhancement module that balances the number of ‘1’s across adjacent input segments. We show the eectiveness of the proposed techniques through two application case studies: SC design of sorting and median filtering.more » « less
-
null (Ed.)Multiply-accumulate (MAC) operations are common in data processing and machine learning but costly in terms of hardware usage. Stochastic Computing (SC) is a promising approach for low-cost hardware design of complex arithmetic operations such as multiplication. Computing with deterministic unary bit-streams (defined as bit-streams with all 1s grouped together at the beginning or end of a bit-stream) has been recently suggested to improve the accuracy of SC. Conventionally, SC designs use multiplexer (MUX) units or OR gates to accumulate data in the stochastic domain. MUX-based addition suffers from scaling of data and OR-based addition from inaccuracy. This work proposes a novel technique for MAC operation on unary bit-streamsthat allows exact, non-scaled addition of multiplication results. By introducing a relative delay between the products, we control correlation between bit-streams and eliminate OR-based addition error. We evaluate the accuracy of the proposed technique compared to the state-of-the-art MAC designs. After quantization, the proposed technique demonstrates at least 37% and up to 100% decrease of the mean absolute error for uniformly distributed random input values, compared to traditional OR-based MAC designs. Further, we demonstrate that the proposed technique is practical and evaluate area, power and energy of three possible implementations.more » « less
-
Low-cost and hardware-efficient design of trigonometric functions is challenging. Stochastic computing (SC), an emerging computing model processing random bit-streams, offers promising solutions for this problem. The existing implementations, however, often overlook the importance of the data converters necessary to generate the needed bit-streams. While recent advancements in SC bit-stream generators focus on basic arithmetic operations such as multiplication and addition, energy-efficient SC design of non-linear functions demands attention to both the computation circuit and the bit-stream generator. This work introduces TriSC, a novel approach for SC-based design of trigonometric functions enjoying state-of-the-art (SOTA) quasi-random bit-streams. Unlike SOTA SC designs of trigonometric functions that heavily rely on delay elements to decorrelate bit-streams, our approach avoids delay elements while improving the accuracy of the results. TriSC yields significant energy savings of up to 92% compared to SOTA. As two novel use cases studied for the first time in SC literature, we employ the proposed design for 2D image transformation and forward kinematics of a robotic arm, two computation-intensive applications demanding low-cost trigonometric designs.more » « less
An official website of the United States government
