- Award ID(s):
- 1651957
- PAR ID:
- 10215332
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 842
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cellulose-based conductive composite fibers hold great promise in smart wearable applications, given cellulose's desirable properties for textiles. Blending conductive fillers with cellulose is the most common means of fiber production. Incorporating a high content of conductive fillers is demanded to achieve desirable conductivity. However, a high filler load deteriorates the processability and mechanical properties of the fibers. Here, developing wet-spun cellulose-based fibers with a unique side-by-side (SBS) structure via sustainable processing is reported. Sustainable sources (cotton linter and post-consumer cotton waste) and a biocompatible intrinsically conductive polymer (i.e., polyaniline, PANI) were engineered into fibers containing two co-continuous phases arranged side-by-side. One phase was neat cellulose serving as the substrate and providing good mechanical properties; another phase was a PANI-rich cellulose blend (50 wt%) affording electrical conductivity. Additionally, an eco-friendly LiOH/urea solvent system was adopted for the fiber spinning process. With the proper control of processing parameters, the SBS fibers demonstrated high conductivity and improved mechanical properties compared to single-phase cellulose and PANI blended fibers. The SBS fibers demonstrated great potential for wearable e-textile applications.more » « less
-
For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary as the fiber spacing achieved using electrospinning with the rotating drum was ~10 microns while fiber spacing achieved using shear force fiber spinning was ~250 microns. To expand to additional polymer systems, we use polymer entanglement and capillary number. Solution properties that favor large capillary numbers (>50) prevent droplet breakup to facilitate fiber formation. Draw-down ratio was useful for determining appropriate process conditions (flow rate, rotational speed of the collector) to achieve continuous formation of fibers. These rules of thumb for considering the polymer solution properties and process parameters are expected to expand use of this platform for creating hierarchical structures of multiple fiber layers for cell scaffolds and additional applications.more » « less
-
Fibrous shape memory polymers (SMPs) have received growing interest in various applications, especially in biomedical applications, which offer new structures at the microscopic level and the potential of enhanced shape deformation of SMPs. In this paper, we report on the development and investigation of the properties of acrylate-based shape memory polymer fibers, fabricated by electrospinning technology with the addition of polystyrene (PS). Fibers with different diameters are manufactured using four different PS solution concentrations (25, 30, 35, and 40 wt%) and three flow rates (1.0, 2.5, and 5.0 μL min −1 ) with a 25 kV applied voltage and 17 cm electrospinning distance. Scanning electron microscope (SEM) images reveal that the average fiber diameter varies with polymer concentration and flow rates, ranging from 0.655 ± 0.376 to 4.975 ± 1.634 μm. Dynamic mechanical analysis (DMA) and stress–strain testing present that the glass transition temperature and tensile values are affected by fiber diameter distribution. The cyclic bending test directly proves that the electrospun SMP fiber webs are able to fully recover; additionally, the recovery speed is also affected by fiber diameter. With the combination of the SMP material and electrospinning technology, this work paves the way in designing and optimizing future SMP fibers properties by adjusting the fiber diameter.more » « less
-
Coaxial‐Spun Hollow Liquid Crystal Elastomer Fiber as a Versatile Platform for Functional Composites
Abstract The design and engineering of liquid crystal elastomers (LCE) composites for enhanced multifunctionality and responsiveness is highly desired. Here, a hollow LCE (h‐LCE) fiber fabricated via coaxial spinning, enabling the straightforward yet effective creation of functional LCE composites, is reported. Inspired by the fiber‐tubule architecture in skeletal muscles, the hollow fiber features an LCE outer shell for programmable actuation and an inner channel allowing for the integration of a variety of functional media. Thus, the h‐LCE fiber can serve as a versatile platform for multifunctionalities in LCE composites. With this unique design strategy, h‐LCE fibers are fabricated with lengths exceeding 3 meters in the lab with outer and inner diameters as small as 250 mm and 120 µm, respectively. The versatility of these h‐LCE fibers across various applications are further demonstrated, from fast‐response stiffness‐tunable actuators by integrating water flow as triggering media and shape memory polymer (SMP) for enhanced mechanical properties, to electrically driven actuating systems through the incorporation of liquid metal, and actuating light‐guides by combining SMP and PDMS optical fiber. The conception of h‐LCE fiber not only advances the design of multifunctional LCE composites but also paves the way for their application in soft robotics, artificial muscles, and beyond.
-
Electrospinning is a versatile approach to generate nanofibers in situ. Yet, recently, wet electrospinning has been introduced as a more efficient way to deposit isolated fibers inside bulk materials. In wet electrospinning, a liquid bath is adopted, instead of a solid collector, for fiber collection. However, despite several studies focused on wet electrospinning to yield polymer composites, few studies have investigated wet electrospinning to yield ceramic composites. In this paper, we propose a novel in-situ fabrication approach for nanofiber-reinforced ceramic composites based on an enhanced wet-electrospinning method. Our method uses electrospinning to draw polymer nanofibers directly into a reactive pre-ceramic gel, which is later activated to yield advanced nanofiber-reinforced ceramic composites. We demonstrate our method by investigating wet electrospun Polyacrylonitrile and Poly(ethylene oxide) fiber-reinforced geopolymer composites, with fiber weight fractions in the range 0.1–1.0 wt%. Wet electrospinning preserves the amorphous structure of geopolymer while changing the molecular arrangement. Wet electrospinning leads to an increase in both the fraction of mesopores and the overall porosity of geopolymer composites. The indentation modulus is in the range 6.76–8.90 GPa and the fracture toughness is in the range 0.49–0.76 MPam with a clear stiffening and toughening effect observed for Poly(ethylene oxide)-reinforced geopolymer composites. This work demonstrates the viability of wet electrospinning to fabricate multifunctional nanofiber-reinforced composites.more » « less