Electrospinning is commonly used for fabrication of polymer fibers. Melt electrospinning, instead of the commonly used solution electrospinning, offers many advantages in generating polymer fibers without using solvents. However, polymer melts have high viscosity which poses major limitations in producing low diameter fibers. Here, melt electrospinning is investigated at elevated temperatures in inert atmosphere to reduce fiber diameters while suppressing thermal degradation. Two types of spinneret configurations, syringe and wire, with two distinct outcomes are studied. In syringe‐based electrospinning, increasing the nozzle temperature from 300 to 360 °C in nitrogen reduced fiber diameter significantly from 33 ± 5 to 10 ± 4 µm. Electrospinning in nitrogen leads to formation of fibers even at a high nozzle temperature of 360 °C, while this temperature leads to thermal degradation when spinning in air. In contrast, increasing the temperature of wire electrospinning setup do not lead to a noticeable reduction in diameter. This is attributed to the viscosity‐dependent flow rate in this method. Increasing the temperature leads to increased flow rates, promoting the formation of thicker fibers, while the increased stretchability promotes the formation of thinner fibers. The results clearly demonstrate advantages of developing polymer microfibers in inert atmosphere to avoid thermal degradation with a temperature‐independent flow control.
- Award ID(s):
- 2016474
- PAR ID:
- 10436445
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 12
- Issue:
- 45
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 29162 to 29169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Tension programmed shape memory polymer (SMP) fibers have been used as sutures for closing wide‐opened cracks per the close‐then‐heal strategy. However, the composite may be subjected to compression loading during service. These compression loads can reduce the amount of recoverable strain in these pre‐tensioned fibers, limiting their ability to close cracks. The purpose of this study is to investigate the effect of in‐service compression loading on the shape memory effect (SME) of composites consisting of SMP fiber and SMP matrix. To this end, pre‐stretched shape memory Polyethylene Terephthalate (PET) fibers were embedded into a shape memory vitrimer to obtain composite samples with different fiber volume fractions. The SME of both the PET fiber and the vitrimer was investigated. The effect of compression load on the SME of the composite was studied. It is found that, uniaxial compression on the composite along the fiber direction significantly reduced the shrinking ability of the embedded pre‐tensioned SMP fibers. Hence, this is a factor that needs to be considered when designing such types of self‐healing composites.
-
null (Ed.)Cholesteryl ester liquid crystals exhibit thermochromic properties related to the existence of a twisted nematic phase. We formulate ternary mixtures of cholesteryl benzoate (CB), cholesteryl pelargonate (CP), and cholesteryl oleyl carbonate (COC) to achieve thermochromic behavior. We aim to achieve thermochromic fibers by incorporating the liquid crystal formulations into electrospun fibers. Two methods of incorporating the liquid crystal (LC) are compared: (1) blend electrospinning and (2) coaxial electrospinning using the same solvent system for the liquid crystal. For blend electrospinning, intermolecular interactions seem to be important in facilitating fiber formation since addition of LC can suppress bead formation. Coaxial electrospinning produces fibers with higher nominal fiber production rates (g/hr) and with higher nominal LC content in the fiber (wt. LC/wt. polymer assuming all of the solvent evaporates) but larger fiber size distributions as quantified by the coefficient of variation in fiber diameter than blend electrospinning with a single nozzle. Importantly, our proof-of-concept experiments demonstrate that coaxially electrospinning with LC and solvent in the core preserves the thermochromic properties of the LC so that thermochromic fibers are achieved.more » « less
-
Abstract Here, a novel melt electrospinning method to produce few‐micron and nanometer thick fibers is presented, in which a polymer‐coated wire with a sharp tip is used as the polymer source. The polymer coating is melted via Joule heating of the source wire and extracted toward the target via electrostatic forces. The high viscosity and low charge density of polymer melts lower their stretchability in melt. The method relies on confining the Taylor cone and reducing initial jet diameter via concentrated electrostatic fields as a means to reduce the diameter of fibers. As a result, the initial jet diameter and the final fiber diameter are reduced by an order of magnitude of three to ten times, respectively, using wire melt electrospinning compared to syringe‐ and edge‐based electrospinning. The fiber diameter melt electrospun via this novel method is 1.0 ± 0.9 µm, considerably thinner than conventional melt electrospinning techniques. The generation of thin fibers are explained in terms of the electrostatic field around the wire tip, as obtained from finite element analysis (FEA), which controls the size and shape of the melt electrospun jet.
-
Coaxial‐Spun Hollow Liquid Crystal Elastomer Fiber as a Versatile Platform for Functional Composites
Abstract The design and engineering of liquid crystal elastomers (LCE) composites for enhanced multifunctionality and responsiveness is highly desired. Here, a hollow LCE (h‐LCE) fiber fabricated via coaxial spinning, enabling the straightforward yet effective creation of functional LCE composites, is reported. Inspired by the fiber‐tubule architecture in skeletal muscles, the hollow fiber features an LCE outer shell for programmable actuation and an inner channel allowing for the integration of a variety of functional media. Thus, the h‐LCE fiber can serve as a versatile platform for multifunctionalities in LCE composites. With this unique design strategy, h‐LCE fibers are fabricated with lengths exceeding 3 meters in the lab with outer and inner diameters as small as 250 mm and 120 µm, respectively. The versatility of these h‐LCE fibers across various applications are further demonstrated, from fast‐response stiffness‐tunable actuators by integrating water flow as triggering media and shape memory polymer (SMP) for enhanced mechanical properties, to electrically driven actuating systems through the incorporation of liquid metal, and actuating light‐guides by combining SMP and PDMS optical fiber. The conception of h‐LCE fiber not only advances the design of multifunctional LCE composites but also paves the way for their application in soft robotics, artificial muscles, and beyond.