skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial fuel cells: a path to green, renewable energy.
Microbial fuel cells (MFCs) are clean, renewable energy sources and they generate self-sustaining clean energy through cellular respiration. MFCs do not require any external energy to operate and do not emit any excess greenhouse gases. MFCs can also be used for bioremediation by removing toxic materials by respiring a variety of metals and other harmful elements including iron and uranium. In this article, we have discussed the principles and designs of biofuel cells.  more » « less
Award ID(s):
1719425
PAR ID:
10215533
Author(s) / Creator(s):
Editor(s):
Mitra, M; Nagchaudhury, A
Date Published:
Journal Name:
Green energy and technology
ISSN:
1865-3537
Page Range / eLocation ID:
195-206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microbial fuel cells (MFCs) that generate electricity generation from a broad diversity of biomass and organic substrates through microbial metabolism have attracted considerable research interest as an alternative clean energy technology and energy‐efficient wastewater treatment method. Despite encouraging successes and auspicious pilot‐scale experiments of the MFCs, increasing doubts about their viability for practical large‐scale applications are being raised. Low performance, expensive core parts and materials, energy‐intensive operation, and scaling bottlenecks question a sustainable development. Instead, special MFCs for low‐power battery‐reliant devices might be more applicable and potentially realizable. Such bacteria‐powered biobatteries would enable i) a truly stand‐alone device platform suitable for use in resource‐limited and remote regions, ii) simple, on‐demand power generation within a programmed period of time, and iii) a tracelessly biodegradable battery due to the use of the bacteria used for power generation. The biobattery would be an excellent power solution for small‐scale, on‐demand, single‐use, and disposable electronics. Recent progress of small‐scale MFC‐based biobatteries is critically reviewed with specific attention toward various device platforms. Furthermore, comments and outlook related to the potential directions and challenges of the biobatteries are discussed to offer inspiration to the community and induce fruitful future research. 
    more » « less
  2. The emergence of the Internet of Things and pervasive sensor networks have generated a surge of research in energy scavenging techniques. We know well that harvesting RF, solar, or kinetic energy enables the creation of battery-free devices that can be used where frequent battery changes or dedicated power lines are impractical. One unusual yet ubiquitous source of power is soil (earth itself) - or more accurately, bacterial communities in soil. Microbial fuel cells (MFCs) are electrochemical cells that harness the activities of microbes that naturally occur in soil, wetlands, and wastewater. MFCs have been a topic of research in environmental engineering and microbiology for decades, but are a relatively new topic in electronics design and research. Most low-power electronics have traditionally opted for batteries, RF energy, or solar cells. This is changing, however, as the limitations and costs of these energy sources hamper our ability to deploy useful systems that last for decades in challenging environments. If large-scale, long-term applications like underground infrastructure monitoring, smart farming, and sensing for conservation are to be possible, we must rethink the energy source. 
    more » « less
  3. The rapid proliferation of the Internet of Things (IoT) necessitates compact, sustainable, and autonomous energy sources for distributed electronic devices. Microbial fuel cells (MFCs) offer an eco‐friendly alternative by converting organic matter into electrical energy using living micro‐organisms. However, their integration into microsystems faces significant challenges, including incompatibility with microfabrication, fragile anode materials, low electrical conductivity, and compromised microbial viability. Here, this study introduces a microscale biobattery platform integrating laser powder bed fusion‐fabricated 316L stainless steel anodes with resilient, spore‐formingBacillus subtilisbiocatalysts. The 3D‐printed gyroid scaffolds provide high surface‐to‐volume ratios, submillimeter porosity, and tunable roughness, enhancing microbial colonization and electron transfer. The stainless steel ensures mechanical robustness, chemical stability, and superior conductivity.Bacillus subtilisspores withstand harsh conditions, enabling prolonged storage and rapid, on‐demand activation. The biobattery produces 130 μW of power, exceeding conventional microscale MFCs, with exceptional reuse stability. A stack of six biobatteries achieves nearly 1 mW, successfully powering a 3.2‐inch thin‐film transistor liquid crystal display via capacitor‐assisted energy buffering, demonstrating practical applicability. This scalable, biologically resilient, and fabrication‐compatible solution advances autonomous electronic systems for IoT applications. 
    more » « less
  4. Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes. 
    more » « less
  5. Solar-powered water electrolysis holds significant promise for the mass production of green hydrogen. However, the substantial water consumption associated with electrolysis not only increases the cost of green hydrogen but also raises critical concerns about accelerating water scarcity. Although seawater can serve as an infinite water supply for green hydrogen production, its complex composition poses substantial challenges to efficient and reliable electrolysis. Here, we demonstrate a high-efficiency solar-powered green hydrogen production from seawater. Our approach takes advantage of the full-spectrum utilization of solar energy. Photovoltaic electricity is used to drive the electrolysis, whereas the waste heat from solar cells is harnessed to produce clean water through seawater distillation. With natural sunlight and real seawater as the sole inputs, we experimentally demonstrate a 12.6% solar-to-hydrogen conversion efficiency and a 35.9 L m−2 h−1 production rate of green hydrogen under one-sun illumination, where additional 1.2 L m−2 h−1 clean water is obtained as a byproduct. By reducing reliance on clean water and electricity supplies, this work provides a fully sustainable strategy to access green hydrogen with favorable energy efficiency and technoeconomic feasibility. 
    more » « less