skip to main content


Title: Relative Dispersion in the Antarctic Circumpolar Current
Abstract Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than ~10 days or ~20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE) suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions), which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km.  more » « less
Award ID(s):
1658479 1756882
NSF-PAR ID:
10215792
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
51
Issue:
2
ISSN:
0022-3670
Page Range / eLocation ID:
553 to 574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate the role of small‐scale, high‐frequency motions on lateral transport in the ocean, by using velocity fields and particle trajectories from an ocean general circulation model (MITgcm‐llc4320) that permits submesoscale flows, inertia‐gravity waves, and tides. Temporal averaging/filtering removes most of the submesoscale turbulence, inertia‐gravity waves, and tides, resulting in a largely geostrophic flow, with a rapid drop‐off in energy at scales smaller than the mesoscales. We advect two types of Lagrangian particles: (a) 2‐D particles (surface restricted) and (b) 3‐D particles (advected in full three dimensions) with the filtered and unfiltered velocities and calculate Lagrangian diagnostics. At large length/time scales, Lagrangian diffusivity is comparable for filtered and unfiltered velocities, while at short scales, unfiltered velocities disperse particles much faster. We also calculate diagnostics of Lagrangian coherent structures:rotationally coherent Lagrangian vortices detected from closed contours of the Lagrangian‐averaged vorticity deviation and material transport barriers formed by ridges of maximum finite‐time Lyapunov exponent. For temporally filtered velocities, we observe strong material coherence, which breaks down when the level of temporal filtering is reduced/removed, due to vigorous small‐scale mixing. In addition, for the lowest temporal resolution, the 3‐D particles experience very little vertical motion, suggesting that degrading temporal resolution greatly reduces vertical advection by high‐frequency motions. Our study suggests that Lagrangian diagnostics based on satellite‐derived surface geostrophic velocity fields, even with higher spatial resolutions as in the upcoming Surface Water and Ocean Topography mission, may overestimate the presence of mesoscale coherent structures and underestimate dispersion.

     
    more » « less
  2. ABSTRACT

    Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.

     
    more » « less
  3. Abstract

    A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.

     
    more » « less
  4. Abstract

    General circulation models use subgrid‐scale (SGS) parameterizations to represent the effects of unresolved mesoscale eddies on large‐scale motions. Most of the current SGS parameterizations are based on a theoretical understanding of transient eddies, where the mean flow is a temporal average. In this work, we use a spatial filtering analysis to better understand the scale‐dependent characteristics of the SGS fluxes. Specifically, we apply the filtering approach to diagnose SGS eddy volume fluxes and eddy velocity scales in a hierarchy of model configurations from a flat bottom channel to an idealized Southern Hemisphere. Importantly, SGS volume fluxes include significant contributions from standing meanders; unlike for transient eddies, the vertically integrated SGS volume flux does not necessarily integrate to 0. To accommodate net vertically integrated eddy fluxes, we define a SGS eddy diffusivity based on planetary potential vorticity (PV) diffusion. We diagnose the transient and standing contributions to SGS fluxes and associated effective diffusivities. In the presence of bottom topography or continental barriers the standing component of the PV diffusivity becomes dominant at large filter scales in the westerly wind region, while the transient component remains dominant in the easterly wind region. Our results suggest that the diagnosed PV diffusivity can be parameterized using mixing length theory based ona prioriestimates of SGS velocity and length scales.

     
    more » « less
  5. The relative velocities and positions of monodisperse high-inertia particle pairs in isotropic turbulence are studied using direct numerical simulations (DNS), as well as Langevin simulations (LS) based on a probability density function (PDF) kinetic model for pair relative motion. In a prior study (Rani et al. , J. Fluid Mech. , vol. 756, 2014, pp. 870–902), the authors developed a stochastic theory that involved deriving closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary. The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large-scale eddies. Accordingly, two diffusivity expressions were obtained based on whether the pair centre of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. In the current study, a quantitative analysis of the (Rani et al. 2014) stochastic theory is performed through a comparison of the pair statistics obtained using LS with those from DNS. LS consist of evolving the Langevin equations for pair separation and relative velocity, which is statistically equivalent to solving the classical Fokker–Planck form of the pair PDF equation. Langevin simulations of particle-pair dispersion were performed using three closure forms of the diffusivity – i.e. the one containing the time integral of the Eulerian two-time correlation of the seen fluid relative velocities and the two analytical diffusivity expressions. In the first closure form, the two-time correlation was computed using DNS of forced isotropic turbulence laden with stationary particles. The two analytical closure forms have the advantage that they can be evaluated using a model for the turbulence energy spectrum that closely matched the DNS spectrum. The three diffusivities are analysed to quantify the effects of the approximations made in deriving them. Pair relative-motion statistics obtained from the three sets of Langevin simulations are compared with the results from the DNS of (moving) particle-laden forced isotropic turbulence for $St_{\unicode[STIX]{x1D702}}=10,20,40,80$ and $Re_{\unicode[STIX]{x1D706}}=76,131$ . Here, $St_{\unicode[STIX]{x1D702}}$ is the particle Stokes number based on the Kolmogorov time scale and $Re_{\unicode[STIX]{x1D706}}$  is the Taylor micro-scale Reynolds number. Statistics such as the radial distribution function (RDF), the variance and kurtosis of particle-pair relative velocities and the particle collision kernel were computed using both Langevin and DNS runs, and compared. The RDFs from the stochastic runs were in good agreement with those from the DNS. Also computed were the PDFs $\unicode[STIX]{x1D6FA}(U|r)$ and $\unicode[STIX]{x1D6FA}(U_{r}|r)$ of relative velocity $U$ and of the radial component of relative velocity $U_{r}$ respectively, both PDFs conditioned on separation $r$ . The first closure form, involving the Eulerian two-time correlation of fluid relative velocities, showed the best agreement with the DNS results for the PDFs. 
    more » « less