skip to main content


Title: A physicist's guide to the solution of Kummer's equation and confluent hypergeometric functions
The confluent hypergeometric equation, also known as Kummer's equation, is one of the most important differential equations in physics, chemistry, and engineering. Its two power series solutions are the Kummer function, M(a,b,z), often referred to as the confluent hypergeometric function of the first kind, and M ≡ z1-bM(1+a-b, 2-b,z), where a and b are parameters that appear in the differential equation. A third function, the Tricomi function, U(a,b,z), sometimes referred to as the confluent hypergeometric function of the second kind, is also a solution of the confluent hypergeometric equation that is routinely used. Contrary to common procedure, all three of these functions (and more) must be considered in a search for the two linearly independent solutions of the confluent hypergeometric equation. There are situations, when a, b, and a - b are integers, where one of these functions is not defined, or two of the functions are not linearly independent, or one of the linearly independent solutions of the differential equation is different from these three functions. Many of these special cases correspond precisely to cases needed to solve problems in physics. This leads to significant confusion about how to work with confluent hypergeometric equations, in spite of authoritative references such as the NIST Digital Library of Mathematical Functions. Here, we carefully describe all of the different cases one has to consider and what the explicit formulas are for the two linearly independent solutions of the confluent hypergeometric equation. The procedure to properly solve the confluent hypergeometric equation is summarized in a convenient table. As an example, we use these solutions to study the bound states of the hydrogenic atom, correcting the standard treatment in textbooks. We also briefly consider the cutoff Coulomb potential. We hope that this guide will aid physicists to properly solve problems that involve the confluent hypergeometric differential equation.  more » « less
Award ID(s):
1915130
NSF-PAR ID:
10451216
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Condensed Matter Physics
Volume:
25
Issue:
3
ISSN:
1607-324X
Page Range / eLocation ID:
33203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum mechanics has about a dozen exactly solvable potentials. Normally, the time-independent Schrödinger equation for them is solved by using a generalized series solution for the bound states (using the Fröbenius method) and then an analytic continuation for the continuum states (if present). In this work, we present an alternative way to solve these problems, based on the Laplace method. This technique uses a similar procedure for the bound states and for the continuum states. It was originally used by Schrödinger when he solved the wave functions of hydrogen. Dirac advocated using this method too. We discuss why it is a powerful approach to solve all problems whose wave functions are represented in terms of confluent hypergeometric functions, especially for the continuum solutions, which can be determined by an easy-to-program contour integral. 
    more » « less
  2. Using a flexible form for ladder operators that incorporates confluent hypergeometric functions, we show how one can determine all of the discrete energy eigenvalues and eigenvectors of the time-independent Schrödinger equation via a single factorization step and the satisfaction of boundary (or normalizability) conditions. This approach determines the bound states of all exactly solvable problems whose wavefunctions can be expressed in terms of confluent hypergeometric functions. It is an alternative that shares aspects of the conventional differential equation approach and Schrödinger’s factorization method, but is different from both. We also explain how this approach relates to Natanzon’s treatment of the same problem and illustrate how to numerically determine nontrivial potentials that can be solved this way.

     
    more » « less
  3. The factorization method was introduced by Schrödinger in 1940. Its use in bound-state problems is widely known, including in supersymmetric quantum mechanics; one can create a factorization chain, which simultaneously solves a sequence of auxiliary Hamiltonians that share common eigenvalues with their adjacent Hamiltonians in the chain, except for the lowest eigenvalue. In this work, we generalize the factorization method to continuum energy eigenstates. Here, one does not generically have a factorization chain—instead all energies are solved using a “single-shot factorization”, enabled by writing the superpotential in a form that includes the logarithmic derivative of a confluent hypergeometric function. The single-shot factorization approach is an alternative to the conventional method of “deriving a differential equation and looking up its solution”, but it does require some working knowledge of confluent hypergeometric functions. This can also be viewed as a method for solving the Ricatti equation needed to construct the superpotential. 
    more » « less
  4. Recent advancements in physics-informed machine learning have contributed to solving partial differential equations through means of a neural network. Following this, several physics-informed neural network works have followed to solve inverse problems arising in structural health monitoring. Other works involving physics-informed neural networks solve the wave equation with partial data and modeling wavefield data generator for efficient sound data generation. While a lot of work has been done to show that partial differential equations can be solved and identified using a neural network, little work has been done the same with more basic machine learning (ML) models. The advantage with basic ML models is that the parameters learned in a simpler model are both more interpretable and extensible. For applications such as ultrasonic nondestructive evaluation, this interpretability is essential for trustworthiness of the methods and characterization of the material system under test. In this work, we show an interpretable, physics-informed representation learning framework that can analyze data across multiple dimensions (e.g., two dimensions of space and one dimension of time). The algorithm comes with convergence guarantees. In addition, our algorithm provides interpretability of the learned model as the parameters correspond to the individual solutions extracted from data. We demonstrate how this algorithm functions with wavefield videos. 
    more » « less
  5. null (Ed.)
    We consider the problem of finding nearly optimal solutions of optimization problems with random objective functions. Such problems arise widely in the theory of random graphs, theoretical computer science, and statistical physics. Two concrete problems we consider are (a) optimizing the Hamiltonian of a spherical or Ising p-spin glass model, and (b) finding a large independent set in a sparse Erdos-Renyi graph. Two families of algorithms are considered: (a) low-degree polynomials of the input-a general framework that captures methods such as approximate message passing and local algorithms on sparse graphs, among others; and (b) the Langevin dynamics algorithm, a canonical Monte Carlo analogue of the gradient descent algorithm (applicable only for the spherical p-spin glass Hamiltonian). We show that neither family of algorithms can produce nearly optimal solutions with high probability. Our proof uses the fact that both models are known to exhibit a variant of the overlap gap property (OGP) of near-optimal solutions. Specifically, for both models, every two solutions whose objective values are above a certain threshold are either close or far from each other. The crux of our proof is the stability of both algorithms: a small perturbation of the input induces a small perturbation of the output. By an interpolation argument, such a stable algorithm cannot overcome the OGP barrier. The stability of the Langevin dynamics is an immediate consequence of the well-posedness of stochastic differential equations. The stability of low-degree polynomials is established using concepts from Gaussian and Boolean Fourier analysis, including noise sensitivity, hypercontractivity, and total influence. 
    more » « less