Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way to
Quantum spin liquids
Spin liquids are quantum phases of matter with a variety of unusual features arising from their topological character, including “fractionalization”—elementary excitations that behave as fractions of an electron. Although there is not yet universally accepted experimental evidence that establishes that any single material has a spin liquid ground state, in the past few years a number of materials have been shown to exhibit distinctive properties that are expected of a quantum spin liquid. Here, we review theoretical and experimental progress in this area.
- Award ID(s):
- 2000987
- Publication Date:
- NSF-PAR ID:
- 10216207
- Journal Name:
- Science
- Volume:
- 367
- Issue:
- 6475
- Page Range or eLocation-ID:
- eaay0668
- ISSN:
- 0036-8075
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract quantum liquids with exotic entanglement through two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilizedmore » -
Quantum spin liquids, exotic phases of matter with topological order, have been a major focus in physics for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to realize robust quantum computation. We used a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms were placed on the links of a kagome lattice, and evolution under Rydberg blockade created frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type was detected by using topological string operatorsmore »
-
Drouhin, Henri-Jean M. ; Wegrowe, Jean-Eric ; Razeghi, Manijeh (Ed.)Parafermions or Fibonacci anyons leading to universal quantum computing, require strongly interacting systems. A leading contender is the fractional quantum Hall effect, where helical channels can arise from counterpropagating chiral modes. These modes have been considered weakly interacting. However, experiments on transport in helical channels in the fractional quantum Hall effect at a 2/3 filling shows current passing through helical channels on the boundary between polarized and unpolarized quantum Hall liquids nine-fold smaller than expected. This current can increase three-fold when nuclei near the boundary are spin polarized. We develop a microscopic theory of strongly interacting helical states and showmore »
-
Abstract The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid, and a conventional superfluid using large-scale quantummore »
-
Abstract The bond-disordered Kitaev model attracts much attention due to the experimental relevance in
α -RuCl3andA 3LiIr2O6(A = H, D, Ag, etc.). Applying a magnetic field to break the time-reversal symmetry leads to a strong modulation in mass terms for Dirac cones. Because of the smallness of the flux gap of the Kitaev model, a small bond disorder can have large influence on itinerant Majorana fermions. The quantization of the thermal Hall conductivityκ x y /T disappears by a quantum Hall transition induced by a small disorder, andκ x y /T shows a rapid crossover into a state with a negligible Hall current. We call this immobile liquid state Anderson–Kitaev spin liquidmore »