skip to main content

Title: Contribution of vertical advection to supergradient wind in tropical cyclone boundary layer: A numerical study
Abstract The existence of supergradient wind in the interior of the boundary layer is a distinct feature of a tropical cyclone (TC). Although the vertical advection is shown to enhance supergradient wind in TC boundary layer (TCBL), how and to what extent the strength and structure of supergradient wind are modulated by vertical advection are not well understood. In this study, both a TCBL model and an axisymmetric full-physics model are used to quantify the contribution of vertical advection process to the strength and vertical structure of supergradient wind in TCBL. Results from the TCBL model show that the removal of vertical advection of radial wind reduces both the strength and height of supergradient wind by slightly more than 50%. The removal of vertical advection of agradient wind reduces the height of the supergradient wind core by ~30% but increases the strength of supergradient wind by ~10%. Results from the full-physics model show that the removal of vertical advection of radial wind or agradient wind reduces both the strength and height of supergradient wind but the removal of that of radial wind produces a more substantial reduction (52%) than the removal of that of agradient wind (35%). However, both the more » intensification rate and final intensity of the simulated TCs in terms of maximum 10-m wind speed show little differences in experiments with and without the vertical advection of radial or agradient wind, suggesting that supergradient wind contributes little to either the intensification rate or the steady-state intensity of the simulated TC. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of the Atmospheric Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although the development of supergradient winds is well understood, the importance of supergradient winds in tropical cyclone (TC) intensification is still under debate. One view is that the spinup of the eyewall occurs by the upward advection of high tangential momentum associated with supergradient winds from the boundary layer. The other view argues that the upward advection of supergradient winds by eyewall updrafts results in an outward agradient force, leading to the formation of a shallow outflow layer immediately above the inflow boundary layer. As a result, the spinup of tangential wind in the eyewall by the upward advection of supergradient wind from the boundary layer is largely offset by the spindown of tangential wind due to the outflow resulting from the agradient force. In this study, the net contribution by the upward advection of the supergradient wind component from the boundary layer to the intensification rate and final intensity of a TC are quantified through ensemble sensitivity numerical experiments using an axisymmetric TC model. Results show that consistent with the second view above, the positive upward advection of the supergradient wind component from the boundary layer by eyewall updrafts is largely offset by the negative radial advection duemore »to the outflow resulting from the outward agradient force. As a result, the upward advection of the supergradient wind component contributes little (often less than 4%) to the intensification rate and but it contributes about 10%–15% to the final intensity of the simulated TC due to the enhanced inner-core air–sea thermodynamic disequilibrium.« less
  2. Abstract The first successful simulation of tropical cyclone (TC) intensification was achieved with a three-layer model, often named the Ooyama-type three-layer model, which consists of a slab boundary layer and two shallow water layers above. Later studies showed that the use of a slab boundary layer would produce unrealistic boundary layer wind structure and too strong eyewall updraft at the top of TC boundary layer and thus simulate unrealistically rapid intensification compared to the use of a height-parameterized boundary layer. To fully consider the highly height-dependent boundary layer dynamics in the Ooyama-type three-layer model, this study replaced the slab boundary layer with a multilevel boundary layer in the Ooyama-type model and used it to conduct simulations of TC intensification and also compared the simulation with that from the model version with a slab boundary layer. Results show that compared with the simulation with a slab boundary layer, the use of a multilevel boundary layer can greatly improve simulations of the boundary-layer wind structure and the strength and radial location of eyewall updraft, and thus more realistic intensification rate due to better treatments of the surface layer processes and the nonlinear advection terms in the boundary layer. Sensitivity of the simulatedmore »TCs to the model configuration and to both horizontal and vertical mixing lengths, sea surface temperature, the Coriolis parameter, and the initial TC vortex structure are also examined. The results demonstrate that this new model can reproduce various sensitivities comparable to those found in previous studies using fully physics models.« less
  3. Abstract

    The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Last, a brief analysis of in situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in situmore »data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally homogeneous surface types—which have been well documented by previous studies—are inappropriate for use near strong frictional heterogeneity.

    « less
  4. This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependentmore »Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades.« less
  5. Abstract

    In this study, the boundary layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer, is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal-wind balance, with eyewall convection coming into moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies, as found recently based on idealized numerical simulations. An ad hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the newmore »IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic Ocean and eastern and western North Pacific Ocean. As compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as seen in observations.

    « less