skip to main content


Title: Fairness Under Composition
Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, statistics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naïve composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition.  more » « less
Award ID(s):
1763665
NSF-PAR ID:
10217367
Author(s) / Creator(s):
;
Editor(s):
Blum, A
Date Published:
Journal Name:
10th Innovations in Theoretical Computer Science Conference (ITCS 2019)
ISSN:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of algorithmic decision making systems in domains which impact the financial, social, and political well-being of people has created a demand for these to be “fair” under some accepted notion of equity. This demand has in turn inspired a large body of work focused on the development of fair learning algorithms which are then used in lieu of their conventional counterparts. Most analysis of such fair algorithms proceeds from the assumption that the people affected by the algorithmic decisions are represented as immutable feature vectors. However, strategic agents may possess both the ability and the incentive to manipulate this observed feature vector in order to attain a more favorable outcome. We explore the impact that strategic agent behavior can have on group-fair classification. We find that in many settings strategic behavior can lead to fairness reversal, with a conventional classifier exhibiting higher fairness than a classifier trained to satisfy group fairness. Further, we show that fairness reversal occurs as a result of a group- fair classifier becoming more selective, achieving fairness largely by excluding individuals from the advantaged group. In contrast, if group fairness is achieved by the classifier becoming more inclusive, fairness reversal does not occur. 
    more » « less
  2. We consider a variation on the classical finance problem of optimal portfolio design. In our setting, a large population of consumers is drawn from some distribution over risk tolerances, and each consumer must be assigned to a portfolio of lower risk than her tolerance. The consumers may also belong to underlying groups (for instance, of demographic properties or wealth), and the goal is to design a small number of portfolios that are fair across groups in a particular and natural technical sense. Our main results are algorithms for optimal and near-optimal portfolio design for both social welfare and fairness objectives, both with and without assumptions on the underlying group structure. We describe an efficient algorithm based on an internal two-player zero-sum game that learns near-optimal fair portfolios ex ante and show experimentally that it can be used to obtain a small set of fair portfolios ex post as well. For the special but natural case in which group structure coincides with risk tolerances (which models the reality that wealthy consumers generally tolerate greater risk), we give an efficient and optimal fair algorithm. We also provide generalization guarantees for the underlying risk distribution that has no dependence on the number of portfolios and illustrate the theory with simulation results. 
    more » « less
  3. Schölkopf, Bernhard ; Uhler, Caroline ; Zhang, Kun (Ed.)
    Fairness of machine learning algorithms has been of increasing interest. In order to suppress or eliminate discrimination in prediction, various notions as well as approaches have been proposed to impose fairness. Given a notion of fairness, an essential problem is then whether or not it can always be attained, even if with an unlimited amount of data. This issue is, however, not well addressed yet. In this paper, focusing on the Equalized Odds notion of fairness, we consider the attainability of this criterion and, furthermore, if it is attainable, the optimality of the prediction performance under various settings. In particular, for prediction performed by a deterministic function of input features, we give conditions under which Equalized Odds can hold true; if the stochastic prediction is acceptable, we show that under mild assumptions, fair predictors can always be derived. For classification, we further prove that compared to enforcing fairness by post-processing, one can always benefit from exploiting all available features during training and get potentially better prediction performance while remaining fair. Moreover, while stochastic prediction can attain Equalized Odds with theoretical guarantees, we also discuss its limitation and potential negative social impacts. 
    more » « less
  4. Fairness is increasingly recognized as a critical component of machine learning systems. However, it is the underlying data on which these systems are trained that often reflect discrimination, suggesting a database repair problem. Existing treatments of fairness rely on statistical correlations that can be fooled by statistical anomalies, such as Simpson's paradox. Proposals for causality-based definitions of fairness can correctly model some of these situations, but they require specification of the underlying causal models. In this paper, we formalize the situation as a database repair problem, proving sufficient conditions for fair classifiers in terms of admissible variables as opposed to a complete causal model. We show that these conditions correctly capture subtle fairness violations. We then use these conditions as the basis for database repair algorithms that provide provable fairness guarantees about classifiers trained on their training labels. We evaluate our algorithms on real data, demonstrating improvement over the state of the art on multiple fairness metrics proposed in the literature while retaining high utility. 
    more » « less
  5. Online bipartite-matching platforms are ubiquitous and find applications in important areas such as crowdsourcing and ridesharing. In the most general form, the platform consists of three entities: two sides to be matched and a platform operator that decides the matching. The design of algorithms for such platforms has traditionally focused on the operator’s (expected) profit. Since fairness has become an important consideration that was ignored in the existing algorithms a collection of online matching algorithms have been developed that give a fair treatment guarantee for one side of the market at the expense of a drop in the operator’s profit. In this paper, we generalize the existing work to offer fair treatment guarantees to both sides of the market simultaneously, at a calculated worst case drop to operator profit. We consider group and individual Rawlsian fairness criteria. Moreover, our algorithms have theoretical guarantees and have adjustable parameters that can be tuned as desired to balance the trade-off between the utilities of the three sides. We also derive hardness results that give clear upper bounds over the performance of any algorithm. A preliminary version with fewer results that was co-authored with Esmaeili, Duppala, Nanda, and Dickerson, appeared as a refereed two-page abstract at AAMAS 2022. 
    more » « less