skip to main content


Title: Practical Accuracy Estimation for Efficient Deep Neural Network Testing
Deep neural network (DNN) has become increasingly popular and DNN testing is very critical to guarantee the correctness of DNN, i.e., the accuracy of DNN in this work. However, DNN testing suffers from a serious efficiency problem, i.e., it is costly to label each test input to know the DNN accuracy for the testing set, since labeling each test input involves multiple persons (even with domain-specific knowledge) in a manual way and the testing set is large-scale. To relieve this problem, we propose a novel and practical approach, called PACE (which is short for P ractical AC curacy E stimation), which selects a small set of test inputs that can precisely estimate the accuracy of the whole testing set. In this way, the labeling costs can be largely reduced by just labeling this small set of selected test inputs. Besides achieving a precise accuracy estimation, to make PACE more practical it is also required that it is interpretable, deterministic, and as efficient as possible. Therefore, PACE first incorporates clustering to interpretably divide test inputs with different testing capabilities (i.e., testing different functionalities of a DNN model) into different groups. Then, PACE utilizes the MMD-critic algorithm, a state-of-the-art example-based explanation algorithm, to select prototypes (i.e., the most representative test inputs) from each group, according to the group sizes, which can reduce the impact of noise due to clustering. Meanwhile, PACE also borrows the idea of adaptive random testing to select test inputs from the minority space (i.e., the test inputs that are not clustered into any group) to achieve great diversity under the required number of test inputs. The two parallel selection processes (i.e., selection from both groups and the minority space) compose the final small set of selected test inputs. We conducted an extensive study to evaluate the performance of PACE based on a comprehensive benchmark (i.e., 24 pairs of DNN models and testing sets) by considering different types of models (i.e., classification and regression models, high-accuracy and low-accuracy models, and CNN and RNN models) and different types of test inputs (i.e., original, mutated, and automatically generated test inputs). The results demonstrate that PACE is able to precisely estimate the accuracy of the whole testing set with only 1.181%∼2.302% deviations, on average, significantly outperforming the state-of-the-art approaches.  more » « less
Award ID(s):
1763906
NSF-PAR ID:
10217487
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Software Engineering and Methodology
Volume:
29
Issue:
4
ISSN:
1049-331X
Page Range / eLocation ID:
1 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop, we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference. 
    more » « less
  2. Abstract Background

    Magnetic resonance imaging (MRI) scans are known to suffer from a variety of acquisition artifacts as well as equipment‐based variations that impact image appearance and segmentation performance. It is still unclear whether a direct relationship exists between magnetic resonance (MR) image quality metrics (IQMs) (e.g., signal‐to‐noise, contrast‐to‐noise) and segmentation accuracy.

    Purpose

    Deep learning (DL) approaches have shown significant promise for automated segmentation of brain tumors on MRI but depend on the quality of input training images. We sought to evaluate the relationship between IQMs of input training images and DL‐based brain tumor segmentation accuracy toward developing more generalizable models for multi‐institutional data.

    Methods

    We trained a 3D DenseNet model on the BraTS 2020 cohorts for segmentation of tumor subregions enhancing tumor (ET), peritumoral edematous, and necrotic and non‐ET on MRI; with performance quantified via a 5‐fold cross‐validated Dice coefficient. MRI scans were evaluated through the open‐source quality control tool MRQy, to yield 13 IQMs per scan. The Pearson correlation coefficient was computed between whole tumor (WT) dice values and IQM measures in the training cohorts to identify quality measures most correlated with segmentation performance. Each selected IQM was used to group MRI scans as “better” quality (BQ) or “worse” quality (WQ), via relative thresholding. Segmentation performance was re‐evaluated for the DenseNet model when (i) training on BQ MRI images with validation on WQ images, as well as (ii) training on WQ images, and validation on BQ images. Trends were further validated on independent test sets derived from the BraTS 2021 training cohorts.

    Results

    For this study, multimodal MRI scans from the BraTS 2020 training cohorts were used to train the segmentation model and validated on independent test sets derived from the BraTS 2021 cohort. Among the selected IQMs, models trained on BQ images based on inhomogeneity measurements (coefficient of variance, coefficient of joint variation, coefficient of variation of the foreground patch) and the models trained on WQ images based on noise measurement peak signal‐to‐noise ratio (SNR) yielded significantly improved tumor segmentation accuracy compared to their inverse models.

    Conclusions

    Our results suggest that a significant correlation may exist between specific MR IQMs and DenseNet‐based brain tumor segmentation performance. The selection of MRI scans for model training based on IQMs may yield more accurate and generalizable models in unseen validation.

     
    more » « less
  3. Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines. 
    more » « less
  4. Alba, Mar (Ed.)
    Abstract Adaptive radiations are characterised by the diversification and ecological differentiation of species, and replicated cases of this process provide natural experiments for understanding the repeatability and pace of molecular evolution. During adaptive radiation, genes related to ecological specialisation may be subject to recurrent positive directional selection. However, it is not clear to what extent patterns of lineage-specific ecological specialisation (including phenotypic convergence) are correlated with shared signatures of molecular evolution. To test this, we sequenced whole exomes from a phylogenetically dispersed sample of 38 murine rodent species, a group characterised by multiple, nested adaptive radiations comprising extensive ecological and phenotypic diversity. We found that genes associated with immunity, reproduction, diet, digestion and taste have been subject to pervasive positive selection during the diversification of murine rodents. We also found a significant correlation between genome-wide positive selection and dietary specialisation, with a higher proportion of positively selected codon sites in derived dietary forms (i.e. carnivores and herbivores) than in ancestral forms (i.e. omnivores). Despite striking convergent evolution of skull morphology and dentition in two distantly related worm-eating specialists, we did not detect more genes with shared signatures of positive or relaxed selection than in a non-convergent species comparison. While a small number of the genes we detected can be incidentally linked to craniofacial morphology or diet, protein-coding regions are unlikely to be the primary genetic basis of this complex convergent phenotype. Our results suggest a link between positive selection and derived ecological phenotypes, and highlight specific genes and general functional categories that may have played an integral role in the extensive and rapid diversification of murine rodents. 
    more » « less
  5. Abstract

    Nonlinear response history analysis (NLRHA) is generally considered to be a reliable and robust method to assess the seismic performance of buildings under strong ground motions. While NLRHA is fairly straightforward to evaluate individual structures for a select set of ground motions at a specific building site, it becomes less practical for performing large numbers of analyses to evaluate either (1) multiple models of alternative design realizations with a site‐specific set of ground motions, or (2) individual archetype building models at multiple sites with multiple sets of ground motions. In this regard, surrogate models offer an alternative to running repeated NLRHAs for variable design realizations or ground motions. In this paper, a recently developed surrogate modeling technique, called probabilistic learning on manifolds (PLoM), is presented to estimate structural seismic response. Essentially, the PLoM method provides an efficient stochastic model to develop mappings between random variables, which can then be used to efficiently estimate the structural responses for systems with variations in design/modeling parameters or ground motion characteristics. The PLoM algorithm is introduced and then used in two case studies of 12‐story buildings for estimating probability distributions of structural responses. The first example focuses on the mapping between variable design parameters of a multidegree‐of‐freedom analysis model and its peak story drift and acceleration responses. The second example applies the PLoM technique to estimate structural responses for variations in site‐specific ground motion characteristics. In both examples, training data sets are generated for orthogonal input parameter grids, and test data sets are developed for input parameters with prescribed statistical distributions. Validation studies are performed to examine the accuracy and efficiency of the PLoM models. Overall, both examples show good agreement between the PLoM model estimates and verification data sets. Moreover, in contrast to other common surrogate modeling techniques, the PLoM model is able to preserve correlation structure between peak responses. Parametric studies are conducted to understand the influence of different PLoM tuning parameters on its prediction accuracy.

     
    more » « less