Analog crossbar arrays have recently attracted significant attention due to their usefulness for deep neural net (DNN) computations with ultra-low power consumption. However, recent studies have shown that DNNs implemented with such crossbar arrays suffer from as high as 30% degradation in performance due to the effects of manufacturing process variability effects resulting in degradation of their functional safety. One way to test these DNNs is to apply an exhaustive set of test images to each device to ascertain its performance. This is expensive and time-consuming. We propose an alternative test scheme in which a small subset of test images is applied to each DNN and the classification accuracy of the DNN is predicted directly from observation of the final layer outputs of the network. This saves test cost while allowing binning of DNNs for performance. Experimental results for a variety of test cases are presented and show test efficiency improvements of 3X over testing with the exhaustive test image set.
more »
« less
Practical Accuracy Estimation for Efficient Deep Neural Network Testing
Deep neural network (DNN) has become increasingly popular and DNN testing is very critical to guarantee the correctness of DNN, i.e., the accuracy of DNN in this work. However, DNN testing suffers from a serious efficiency problem, i.e., it is costly to label each test input to know the DNN accuracy for the testing set, since labeling each test input involves multiple persons (even with domain-specific knowledge) in a manual way and the testing set is large-scale. To relieve this problem, we propose a novel and practical approach, called PACE (which is short for P ractical AC curacy E stimation), which selects a small set of test inputs that can precisely estimate the accuracy of the whole testing set. In this way, the labeling costs can be largely reduced by just labeling this small set of selected test inputs. Besides achieving a precise accuracy estimation, to make PACE more practical it is also required that it is interpretable, deterministic, and as efficient as possible. Therefore, PACE first incorporates clustering to interpretably divide test inputs with different testing capabilities (i.e., testing different functionalities of a DNN model) into different groups. Then, PACE utilizes the MMD-critic algorithm, a state-of-the-art example-based explanation algorithm, to select prototypes (i.e., the most representative test inputs) from each group, according to the group sizes, which can reduce the impact of noise due to clustering. Meanwhile, PACE also borrows the idea of adaptive random testing to select test inputs from the minority space (i.e., the test inputs that are not clustered into any group) to achieve great diversity under the required number of test inputs. The two parallel selection processes (i.e., selection from both groups and the minority space) compose the final small set of selected test inputs. We conducted an extensive study to evaluate the performance of PACE based on a comprehensive benchmark (i.e., 24 pairs of DNN models and testing sets) by considering different types of models (i.e., classification and regression models, high-accuracy and low-accuracy models, and CNN and RNN models) and different types of test inputs (i.e., original, mutated, and automatically generated test inputs). The results demonstrate that PACE is able to precisely estimate the accuracy of the whole testing set with only 1.181%∼2.302% deviations, on average, significantly outperforming the state-of-the-art approaches.
more »
« less
- Award ID(s):
- 1763906
- PAR ID:
- 10217487
- Date Published:
- Journal Name:
- ACM Transactions on Software Engineering and Methodology
- Volume:
- 29
- Issue:
- 4
- ISSN:
- 1049-331X
- Page Range / eLocation ID:
- 1 to 35
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Variability-induced accuracy degradation of RRAMbased DNNs is of great concern due to their significant potential for use in future energy-efficient machine learning architectures. To address this, we propose a two-step process. First, an enhanced testing procedure is used to predict DNN accuracy from a set of compact test stimuli (images). This test response (signature) is simply the concatenated vectors of output neurons of intermediate and final DNN layers over the compact test images applied. DNNs with a predicted accuracy below a threshold are then tuned based on this signature vector. Using a clustering based approach, the signature is mapped to the optimal tuning parameter values of the DNN (determined using off-line training of the DNN via backpropagation) in a single step, eliminating any post-manufacture training of the DNN weights (expensive). The tuning parameters themselves consist of the gains and offsets of the ReLU activation of neurons of the DNN on a per-layer basis and can be tuned digitally. Tuning is achieved in less than a second of tuning time, with yield improvements of over 45% with a modest accuracy reduction of 4% compared to digital DNNs.more » « less
-
Variability-induced accuracy degradation of RRAM based DNNs is of great concern due to their significant potential for use in future energy-efficient machine learning architectures. To address this, we propose a two-step process. First, an enhanced testing procedure is used to predict DNN accuracy from a set of compact test stimuli (images). This test response (signature) is simply the concatenated vectors of output neurons of intermediate final DNN layers over the compact test images applied. DNNs with a predicted accuracy below a threshold are then tuned based on this signature vector. Using a clustering based approach, the signature is mapped to the optimal tuning parameter values of the DNN (determined using off-line training of the DNN via backpropagation) in a single step, eliminating any post-manufacture training of the DNN weights (expensive). The tuning parameters themselves consist of the gains and offsets of the ReLU activation of neurons of the DNN on a per-layer basis and can be tuned digitally. Tuning is achieved in less than a second of tuning time, with yield improvements of over 45% with a modest accuracy reduction of 4% compared to digital DNNs.more » « less
-
Deep neural networks (DNN) are being used in a wide range of applications including safety-critical systems. Several DNN test gen- eration approaches have been proposed to generate fault-revealing test inputs. However, the existing test generation approaches do not systematically cover the input data distribution to test DNNs with diverse inputs, and none of the approaches investigate the re- lationship between rare inputs and faults. We propose cit4dnn, an automated black-box approach to generate DNN test sets that are feature-diverse and that comprise rare inputs. cit4dnn constructs diverse test sets by applying combinatorial interaction testing to the latent space of generative models and formulates constraints over the geometry of the latent space to generate rare and fault-revealing test inputs. Evaluation on a range of datasets and models shows that cit4dnn generated tests are more feature diverse than the state-of-the-art, and can target rare fault-revealing testing inputs more effectively than existing methods.more » « less
-
Testing deep neural networks (DNNs) has garnered great interest in the recent years due to their use in many applications. Black-box test adequacy measures are useful for guiding the testing process in covering the input domain. However, the absence of input specifications makes it challenging to apply black-box test adequacy measures in DNN testing. The Input Distribution Coverage (IDC) framework addresses this challenge by using a variational autoencoder to learn a low dimensional latent representation of the input distribution, and then using that latent space as a coverage domain for testing. IDC applies combinatorial interaction testing on a partitioning of the latent space to measure test adequacy. Empirical evaluation demonstrates that IDC is cost-effective, capable of detecting feature diversity in test inputs, and more sensitive than prior work to test inputs generated using different DNN test generation methods. The findings demonstrate that IDC overcomes several limitations of white-box DNN coverage approaches by discounting coverage from unrealistic inputs and enabling the calculation of test adequacy metrics that capture the feature diversity present in the input space of DNNs.more » « less
An official website of the United States government

