skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Private and rateless adaptive coded matrix-vector multiplication
Abstract Edge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (1) the privacy requirements of IoT applications and devices, and (2) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones.  more » « less
Award ID(s):
1942878
PAR ID:
10218254
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
EURASIP Journal on Wireless Communications and Networking
Volume:
2021
Issue:
1
ISSN:
1687-1499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With distributed communication, computation, and storage resources close to end users, edge computing has great potentials to support delay-sensitive industrial applications involving intelligent edge devices. Cognitive portable ground penetrating radars (GPRs) are expected to achieve high-quality sensing performance in a variety of industrial environments by operating intelligently and adaptively under varying sensing conditions. Although edge computing makes it very promising to develop cognitive portable GPRs, both strict performance requirement and trade-offs between communication and computation pose significant challenges. This paper presents an edge computing framework for cognitive portable GPRs. Specifically, the system architecture of an EC-enabled cognitive portable GPR is developed. Based on the identification of various involved computation tasks, an offloading policy was proposed to determine whether computation tasks should be executed locally or offloaded to the edge server. Experimental results show the efficacy of the proposed methods. The framework also provides insight into the design of cognitive Internet of things (IoT) supported by edge computing. 
    more » « less
  2. null (Ed.)
    This paper aims at reducing computation for Retinanet, an mAP-30-tier network, to facilitate its practical deployment on edge devices for providing IoT-based object detection services. We first validate RetinaNet has the best FLOP-mAP trade-off among all mAP-30-tier network. Then, we propose a light-weight RetinaNet structure with effective computation- accuracy trade-off by only reducing FLOPs in computationally intensive layers. Compared with the most common way of trading off computation with accuracy-input image scaling, the proposed solution shows a consistently better FLOPs-mAP trade-off curve. Light-weight RetinaNet achieves a 0.3% mAP improvement at 1.8x FLOPs reduction point over the original RetinaNet, and gains 1.8x more energy-efficiency on an Intel Arria 10 FPGA accelerator in the context of edge computing. The proposed method potentially can help a wide range of the object detection applications to move closer to a preferred corner for a better runtime and accuracy, while enjoys more energy-efficient inference at the edge. 
    more » « less
  3. null (Ed.)
    Due to the proliferation of Internet of Things (IoT) and application/user demands that challenge communication and computation, edge computing has emerged as the paradigm to bring computing resources closer to users. In this paper, we present Whispering, an analytical model for the migration of services (service offloading) from the cloud to the edge, in order to minimize the completion time of computational tasks offloaded by user devices and improve the utilization of resources. We also empirically investigate the impact of reusing the results of previously executed tasks for the execution of newly received tasks (computation reuse) and propose an adaptive task offloading scheme between edge and cloud. Our evaluation results show that Whispering achieves up to 35% and 97% (when coupled with computation reuse) lower task completion times than cases where tasks are executed exclusively at the edge or the cloud. 
    more » « less
  4. null (Ed.)
    In today's era of Internet of Things (IoT), where massive amounts of data are produced by IoT and other devices, edge computing has emerged as a prominent paradigm for low-latency data processing. However, applications may have diverse latency requirements: certain latency-sensitive processing operations may need to be performed at the edge, while delay-tolerant operations can be performed on the cloud, without occupying the potentially limited edge computing resources. To achieve that, we envision an environment where computing resources are distributed across edge and cloud offerings. In this paper, we present the design of CLEDGE (CLoud + EDGE), an information-centric hybrid cloud-edge framework, aiming to maximize the on-time completion of computational tasks offloaded by applications with diverse latency requirements. The design of CLEDGE is motivated by the networking challenges that mixed reality researchers face. Our evaluation demonstrates that CLEDGE can complete on-time more than 90% of offloaded tasks with modest overheads. 
    more » « less
  5. Internet of Things (IoT) ecosystems are becoming increasingly ubiquitous and heterogeneous, adding extra layers of complexity to secure communication and resource allocation. IoT computing resources are often located at the network edge and distributed across many heterogeneous sensors, actuators, and controller devices. This makes it challenging to provide the proper security mechanisms to IoT ecosystems in terms of manageability and maintainability. In an IoT ecosystem, computational resources are naturally distributed and shareable among their constituency, which creates an opportunity to distribute heavy tasks to them. However, resource allocation in IoT requires secure and complex communication and coordination mechanisms, which existing ones do not adequately support. In this paper, we present Secure Actor-based Model for IoT Communication (SecIoTComm), a model for representing secure IoT communication. SecIoTComm aims to represent secure IoT communication properties and design and implement novel mechanisms to improve their programmability and performance. SecIoTComm separates the communication and computation concerns, achieving design modularity in building IoT ecosystems. First, this paper presents the syntax and operational semantics of SecIoTComm. Then, we present an IoT framework implementing the key concepts of the model. Finally, we evaluate the developed framework using various performance and scalability metrics. 
    more » « less