Graphene has transformed the fields of plasmonics and photonics, and become an indispensable component for devices operating in the terahertz to mid-infrared range. Here, for instance, graphene surface plasmons can be excited, and their extreme interfacial confinement makes them vastly effective for sensing and detection. The rapid, robust, and accurate numerical simulation of optical devices featuring graphene is of paramount importance and many groups appeal to Black-Box Finite Element solvers. While accurate, these are quite computationally expensive for problems with simplifying geometrical features such as multiple homogeneous layers, which can be recast in terms of interfacial (rather than volumetric) unknowns. In either case, an important modeling consideration is whether to treat the graphene as a material of small (but non-zero) thickness with an effective permittivity, or as a vanishingly thin sheet of current with an effective conductivity. In this contribution we ponder the correct relationship between the effective conductivity and permittivity of graphene, and propose a new relation which is based upon a concrete mathematical calculation that appears to be missing in the literature. We then test our new model both in the case in which the interface deformation is non-trivial, and when there are two layers of graphene with non-flat interfacial deformation.
more »
« less
Launching graphene surface plasmon waves with vanishingly small periodic grating structures
Graphene is now a crucial component of many device designs in electronics and optics. Just like the noble metals, this single layer of carbon atoms in a honeycomb lattice can support surface plasmons, which are central to several sensing technologies in the mid-infrared regime. As with classical metal plasmons, periodic corrugations in the graphene sheet itself can be used to launch these surface waves; however, as graphene plasmons are tightly confined, the role of unwanted surface roughness, even at a nanometer scale, cannot be ignored. In this work, we revisit our previous numerical experiments on metal plasmons launched by vanishingly small grating structures, with the addition of graphene to the structure. These simulations are conducted with a recently devised, rapid, and robust high-order spectral scheme of the authors, and with it we carefully demonstrate how the plasmonic response of a perfectly flat sheet of graphene can be significantly altered with even a tiny corrugation (on the order of merely 5 nm). With these results, we demonstrate the primary importance of fabrication techniques that produce interfaces whose deviations from flat are on the order of angstroms.
more »
« less
- Award ID(s):
- 1813033
- PAR ID:
- 10218728
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America A
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 1084-7529; JOAOD6
- Format(s):
- Medium: X Size: Article No. 556
- Size(s):
- Article No. 556
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graphene can support surface plasmons with higher confinement, lower propagation loss, and substantially more tunable response compared to usual metal-based plasmonic structures. Interestingly, plasmons in graphene can strongly couple with nanostructures and gratings placed in its vicinity to form new hybrid systems that can provide a platform to investigate more complicated plasmonic phenomena. In this Perspective, an analysis on the excitation of highly confined graphene plasmons and their strong coupling with metallic or dielectric gratings is performed. We emphasize the flexibility in the efficient control of light–matter interaction by these new hybrid systems, benefiting from the interplay between graphene plasmons and other external resonant modes. The hybrid graphene-plasmon grating systems offer unique tunable plasmonic resonances with enhanced field distributions. They exhibit a novel route to realize practical emerging applications, including nonreciprocal devices, plasmonic switches, perfect absorbers, nonlinear structures, photodetectors, and optical sensors.more » « less
-
Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO 2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens ( i.e. , salt crystals) in the graphene ink which act as hard templates for pore formation and are later dissolved in water. Subsequently, microsized pores (∼100 nm to 2 μm in width) with edge plane defects are etched in the graphene lattice structure by laser annealing with a CO 2 laser, simultaneously improving electrical conductivity by nearly three orders of magnitude (sheet resistance decreases from >10 000 to ∼50 Ω sq −1 ). We demonstrate that this multidimensional porous graphene fabrication method can improve electrochemical device performance through design and manufacture of an electrochemical organophosphate biosensor that uses the enzyme acetylcholinesterase for detection. This pesticide biosensor exhibits enhanced sensitivity to acetylthiocholine compared to graphene without macropores (28.3 μA nM −1 to 13.3 μA nM −1 ) and when inhibited by organophosphate pesticides (paraoxon) has a wide linear range (10 nM to 500 nM), low limit of detection (0.6 nM), and high sensitivity (12.4 nA nM −1 ). Moreover, this fabrication method is capable of patterning complex geometries [ i.e. interdigitated electrodes (IDEs)] even on flexible surfaces as demonstrated by an IDE supercapacitor made of SIIML graphene on a heat sensitive polymer substrate. The supercapacitor demonstrates a high energy density of 0.25 mW h cm −3 at a power density of 0.3 W cm −3 . These electrochemical devices demonstrate the benefit of using SIIML and CO 2 laser annealing for patterning graphene electrodes with a multidimensional porous surface even on flexible substrates and is therefore a platform technology which could be applied to a variety of different biosensors and other electrochemical devices.more » « less
-
Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □ −1 ) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □ −1 ). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics.more » « less
-
Abstract Graphene, owing to its inherent chemical inertness, biocompatibility, and mechanical flexibility, has great potential in guiding cell behaviors such as adhesion and differentiation. However, due to the two-dimensional (2D) nature of graphene, the microfabrication of graphene into micro/nanoscale patterns has been widely adopted for guiding cellular assembly. In this study, we report crumpled graphene, i.e., monolithically defined graphene with a nanoscale wavy surface texture, as a tissue engineering platform that can efficiently promote aligned C2C12 mouse myoblast cell differentiation. We imparted out-of-plane, nanoscale crumpled morphologies to flat graphene via compressive strain-induced deformation. When C2C12 mouse myoblast cells were seeded on the uniaxially crumpled graphene, not only were the alignment and elongation promoted at a single-cell level but also the differentiation and maturation of myotubes were enhanced compared to that on flat graphene. These results demonstrate the utility of the crumpled graphene platform for tissue engineering and regenerative medicine for skeletal muscle tissues.more » « less
An official website of the United States government
