skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition
In this work, the formation of carbide with the concertation of carbon at 0.1 at.% in refractory high-entropy alloy (RHEA) Mo15Nb20Re15Ta30W20 was studied under both ambient and high-pressure high-temperature conditions. The x-ray diffraction of dilute carbon (C)-doped RHEA under ambient pressure showed that the phases and lattice constant of RHEA were not influenced by the addition of 0.1 at.% C. In contrast, C-doped RHEA showed unexpected phase formation and transformation under combined high-pressure and high-temperature conditions by resistively employing the heated diamond anvil cell (DAC) technique. The new FCC_L12 phase appeared at 6 GPa and 809 °C and preserved the ambient temperature and pressure. High-pressure and high-temperature promoted the formation of carbides Ta3C and Nb3C, which are stable and may further improve the mechanical performance of the dilute C-doped alloy Mo15Nb20Re15Ta30W20.  more » « less
Award ID(s):
1946231
NSF-PAR ID:
10218833
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Entropy
Volume:
22
Issue:
7
ISSN:
1099-4300
Page Range / eLocation ID:
718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, the performance of the carbon doped compositionally complex alloy (CCA) MoNbTaW was studied under ambient and high pressure and high temperature conditions. TaC and NbC carbides were formed when a large concentration of carbon was introduced while synthesizing the MoNbTaW alloy. Both FCC carbides and BCC CCA phases were detected in the sample compound at room temperature, in which the BCC phase was believed to have only refractory elements MoNbTaW while FCC carbide came from TaC and NbC. Carbides in the carbon doped MoNbTaW alloy were very stable since no phase transition was obtained even under 3.1 GPa and 870 °C by employing the resistor-heating diamond anvil cell (DAC) synchrotron X-ray diffraction technique. Via in situ examination, this study confirms the stability of carbides and MoNbTaW in the carbon doped CCA even under high pressure and high temperature. 
    more » « less
  2. Abstract

    Refractory high‐entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy‐design principles, a single‐phase body‐centered‐cubic (BCC) CrMoNbV RHEA with high‐temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high‐temperature strength is revealed by in situ neutron scattering, transmission‐electron microscopy, and first‐principles calculations. The CrMoNbV's elevated‐temperature strength retention up to 1273 K arises from its large atomic‐size and elastic‐modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non‐screw character dislocations caused by the strong solute pinning, which makes the solid‐solution strengthening pronounced. The alloy‐design principles and the insights in this study pave the way to design RHEAs with outstanding high‐temperature strength.

     
    more » « less
  3. Nitrogen doped lutetium hydride has drawn global attention in the pursuit of room-temperature superconductivity near ambient pressure and temperature. However, variable synthesis techniques and uncertainty surrounding nitrogen concentration have contributed to extensive debate within the scientific community about this material and its properties. We used a solid-state approach to synthesize nitrogen doped lutetium hydride at high pressure and temperature (HPT) and analyzed the residual starting materials to determine its nitrogen content. High temperature oxide melt solution calorimetry determined the formation enthalpy of LuH1.96N0.02(LHN) from LuH2and LuN to be −28.4 ± 11.4 kJ/mol. Magnetic measurements indicated diamagnetism which increased with nitrogen content. Ambient pressure conductivity measurements observed metallic behavior from 5 to 350 K, and the constant and parabolic magnetoresistance changed with increasing temperature. High pressure conductivity measurements revealed that LHN does not exhibit superconductivity up to 26.6 GPa. We compressed LHN in a diamond anvil cell to 13.7 GPa and measured the Raman signal at each step, with no evidence of any phase transition. Despite the absence of superconductivity, a color change from blue to purple to red was observed with increasing pressure. Thus, our findings confirm the thermodynamic stability of LHN, do not support superconductivity, and provide insights into the origins of its diamagnetism.

     
    more » « less
  4. null (Ed.)
    Abstract An unprecedented NiSn 2 intermetallic with CoGe 2 -type crystal structure has been recovered (at ambient conditions) after high-pressure high-temperature treatment of a Ni 33 Sn 67 precursor alloy at 10 GPa and 400 °C. The orthorhombic structure with Aeam space group symmetry is pseudotetragonal. Based on the evaluation of powder X-ray diffraction data, lattice parameters of a  =  b  = 6.2818 Å and c  = 11.8960 Å have been determined. Complicated line broadening and results of a further microstructure analysis, however, imply a defective character of the crystal structure. First-principles calculations with different model structures and a comparison with structural trends in the literature suggest that at the high-pressure high-temperature conditions a CuAl 2 -type crystal structure might be stable, which transforms to the recovered CoGe 2 -type crystal structure upon cooling or the release of pressure. 
    more » « less
  5. Anil, Arga Chandrashekar (Ed.)
    There is little information on the impacts of climate change on resource partitioning for mixotrophic phytoplankton. Here, we investigated the hypothesis that light interacts with temperature and CO 2 to affect changes in growth and cellular carbon and nitrogen content of the mixotrophic dinoflagellate, Karlodinium veneficum , with increasing cellular carbon and nitrogen content under low light conditions and increased growth under high light conditions. Using a multifactorial design, the interactive effects of light, temperature and CO 2 were investigated on K . veneficum at ambient temperature and CO 2 levels (25°C, 375 ppm), high temperature (30°C, 375 ppm CO 2 ), high CO 2 (30°C, 750 ppm CO 2 ), or a combination of both high temperature and CO 2 (30°C, 750 ppm CO 2 ) at low light intensities (LL: 70 μmol photons m -2 s -2 ) and light-saturated conditions (HL: 140 μmol photons m -2 s -2 ). Results revealed significant interactions between light and temperature for all parameters. Growth rates were not significantly different among LL treatments, but increased significantly with temperature or a combination of elevated temperature and CO 2 under HL compared to ambient conditions. Particulate carbon and nitrogen content increased in response to temperature or a combination of elevated temperature and CO 2 under LL conditions, but significantly decreased in HL cultures exposed to elevated temperature and/or CO 2 compared to ambient conditions at HL. Significant increases in C:N ratios were observed only in the combined treatment under LL, suggesting a synergistic effect of temperature and CO 2 on carbon assimilation, while increases in C:N under HL were driven only by an increase in CO 2 . Results indicate light-driven variations in growth and nutrient acquisition strategies for K . veneficum that may benefit this species under anticipated climate change conditions (elevated light, temperature and p CO 2 ) while also affecting trophic transfer efficiency during blooms of this species. 
    more » « less