skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Weathering Performance of Poly(Lactic Acid) through Carbon Nanotubes Addition: Thermal, Microstructural, and Nanomechanical Analyses
To understand the interrelationship between the microstructure and degradation behavior of poly(lactic acid) (PLA), single-walled carbon nanotubes (CNTs) were introduced into PLA as nucleating agents. The degradation behavior of PLA-CNT nanocomposites was examined under accelerated weathering conditions with exposure to UV light, heat, and moisture. The degradation mechanism proceeded via the Norrish type II mechanism of carbonyl polyester. Differential scanning calorimetry (DSC) studies showed an increase in glass transition temperature, melting temperature, and crystallinity as a result of the degradation. However, pure PLA showed higher degradation as evidenced by increased crystallinity, lower onset decomposition temperature, embrittlement, and a higher number of micro-voids which became broader and deeper during degradation. In the PLA-CNT nanocomposites, CNTs created a tortuous pathway which inhibits the penetration of water molecules deeper into the polymer matrix, making PLA thermally stable by increasing the initial temperature of mass loss. CNTs appear to retard PLA degradation by impeding mass transfer. Our study will facilitate designing environmentally friendly packaging materials that display greater resistance to degradation in the presence of moisture and UV light.  more » « less
Award ID(s):
1946231
PAR ID:
10218906
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomimetics
Volume:
5
Issue:
4
ISSN:
2313-7673
Page Range / eLocation ID:
61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon nanotube (CNT)/epoxy nanocomposites have a great potential of possessing many advanced properties. However, the homogenization of CNT dispersion is still a great challenge in the research field of nanocomposites. This study applied a novel dispersion agent, carboxymethyl cellulose (CMC), to functionalize CNTs and improve CNT dispersion in epoxy. The effectiveness of the CMC functionalization was compared with mechanical mixing and a commonly used surfactant, sodium dodecylbenzene sulfonate (NaDDBS), regarding dispersion, mechanical and corrosion properties of CNT/epoxy nanocomposites with three different CNT concentrations (0.1%, 0.3% and 0.5%). The experimental results of Raman spectroscopy, particle size analysis and transmission electron microscopy showed that CMC functionalized CNTs reduced CNT cluster sizes more efficiently than NaDDBS functionalized and mechanically mixed CNTs, indicating a better CNT dispersion. The peak particle size of CMC functionalized CNTs reduced as much as 54% (0.1% CNT concentration) and 16% (0.3% CNT concentration), compared to mechanical mixed and NaDDBS functionalized CNTs. Because of the better dispersion, it was found by compressive tests that CNT/epoxy nanocomposites with CMC functionalization resulted in 189% and 66% higher compressive strength, 224% and 50% higher modulus of elasticity than those with mechanical mixing and NaDDBS functionalization respectively (0.1% CNT cencentration). In addition, electrochemical corrosion tests also showed that CNT/epoxy nanocomposites with CMC functionalization achieved lowest corrosion rate (0.214 mpy), the highest corrosion resistance (201.031 Ω·cm2), and the lowest porosity density (0.011%). 
    more » « less
  2. Polymer composites with small amount of CNTs (< 5 wt%) have been studied as a light-weight wear-resistant material with low friction, among other applications, but their modulus improvement often plateaus or diminishes with increasing CNT fraction due to agglomeration. Here, polymer nanocomposites were fabricated with randomly oriented or aligned CNTs across their volume (up to 5 mm length) by CNT surface diazotization and by static magnetic field application (400 G for 40 min). With the improved CNT dispersion and thus less agglomeration, the reduced moduli of PNCs stayed improved with addition of up to 1 vol% (or 1.3 wt%) of CNTs. In this work, the PNCs with randomly oriented CNTs exhibited higher stiffness than the PNCs with magnetically aligned and assembled CNTs, indicating again the negative effect of CNT agglomeration on stiffness. In future, other CNT structuring methods with controlled inter-CNT contacts will be conducted to dissociate alignment from local agglomeration of CNTs and thus to simultaneously improve hardness and modulus of PNCs with small CNT addition. 
    more » « less
  3. Reinforcing composite materials with carbon nanotubes (CNTs) has the potential to improve mechanical and/or multifunctional properties due to their nano-size. Research has been done on using CNTs to reinforce the interlaminar strength of carbon fiber reinforced composites (CFRPs), but most of the previous work is about randomly oriented carbon nanotubes. Currently, one of the main challenges regarding CNT integration into polymers is mitigating their agglomeration and controlling their dispersion in the polymer matrix. By aligning CNTs with an external field, more tailored structure control can be achieved, and a better understanding of how CNT agglomeration and dispersion relate to external field application and CNT concentration is needed. In this work, we studied the effects of magnetic field magnitude, CNT concentration, and matrix viscosity on CNT agglomeration and morphology. We measured the fracture toughness reinforcement of epoxy-CNT nanocomposites at various CNT concentrations (0.1 vol.% and 0.5 vol.%), magnetic field magnitudes (no field, 180 G, and 300 G), and matrix viscosities (older epoxy-hardener system with higher viscosity and newer epoxy-hardener system with lower viscosity). Our results demonstrated that aligning CNTs with a magnetic field can lead to extra reinforcement when compared to using randomly oriented CNTs if the field magnitude, CNT concentration, and matrix viscosity are selected accordingly. The maximum fracture toughness reinforcement achieved with the higher viscosity epoxy-hardener system (~72%) was with 0.5 vol.% of CNTs with a 180 G field, whereas the maximum reinforcement with the lower viscosity epoxy-hardener system (~62%) was observed for the samples fabricated with 0.1 vol.% of randomly oriented CNTs. COMSOL simulations were also conducted to understand the behavior of CNT agglomeration and alignment at different field magnitudes and CNT concentrations, and were compared with the experimental results. To maximize CNT reinforcement, more work needs to be conducted to address the challenge of CNT agglomeration and dispersion control in a polymer matrix, such as a more in-depth study of how different field magnitudes affect fracture toughness improvement and new methods to improve CNT dispersion. 
    more » « less
  4. Water dynamics in nanochannels are altered by confinement, particularly in small carbon nanotubes (CNTs). However, the mechanisms behind these effects remain unclear. To address these issues, we carried out extensive molecular dynamics (MD) simulations to investigate the structure and dynamics of water inside CNTs of different sizes (length of 20 nm and diameters vary from 0.8 nm to 5.0 nm) at different temperatures (from 200 K to 420 K). The radial density profile of water inside CNTs shows a single peak near the CNT walls for small nanotubes. For CNTs with larger sizes, water molecules are arranged into coaxial tubular sheets, the number of which increases with the CNT size. Subdiffusive behavior is observed for ultranarrow CNTs with diameters of 0.8 nm and 1 nm. As the size of CNTs increases, Fickian diffusion becomes evident. The hydrogen bond correlation function of water inside CNT decays slower than in bulk water, and the decay rate decreases as we increase the diameter of the CNTs. In large CNTs, the hydrogen bond lifetime of the innermost layer is shorter than the other layers and depends on temperature. Additional analysis of our results reveals that water molecules along the CNT axis show a non-Arrhenius to Arrhenius diffusion crossover. In general, the diffusion transition temperature is higher than that of bulk water, but it depends on the size of the CNT. 
    more » « less
  5. Additive manufacturing (AM) as a disruptive technique has offered great potential to design and fabricate many metallic components for aerospace, medical, nuclear, and energy applications where parts have complex geometry. However, a limited number of materials suitable for the AM process is one of the shortcomings of this technique, in particular laser AM of copper (Cu) is challenging due to its high thermal conductivity and optical reflectivity, which requires higher heat input to melt powders. Fabrication of composites using AM is also very challenging and not easily achievable using the current powder bed technologies. Here, the feasibility to fabricate pure copper and copper-carbon nanotube (Cu-CNT) composites was investigated using laser powder bed fusion additive manufacturing (LPBF-AM), and 10 × 10 × 10 mm3 cubes of Cu and Cu-CNTs were made by applying a Design of Experiment (DoE) varying three parameters: laser power, laser speed, and hatch spacing at three levels. For both Cu and Cu-CNT samples, relative density above 90% and 80% were achieved, respectively. Density measurement was carried out three times for each sample, and the error was found to be less than 0.1%. Roughness measurement was performed on a 5 mm length of the sample to obtain statistically significant results. As-built Cu showed average surface roughness (Ra) below 20 µm; however, the surface of AM Cu-CNT samples showed roughness values as large as 1 mm. Due to its porous structure, the as-built Cu showed thermal conductivity of ~108 W/m·K and electrical conductivity of ~20% IACS (International Annealed Copper Standard) at room temperature, ~70% and ~80% lower than those of conventionally fabricated bulk Cu. Thermal conductivity and electrical conductivity were ~85 W/m·K and ~10% IACS for as-built Cu-CNT composites at room temperature. As-built Cu-CNTs showed higher thermal conductivity as compared to as-built Cu at a temperature range from 373 K to 873 K. Because of their large surface area, light weight, and large energy absorbing behavior, porous Cu and Cu-CNT materials can be used in electrodes, catalysts and their carriers, capacitors, heat exchangers, and heat and impact absorption. 
    more » « less