skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teleconnections and relationship between the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium
Abstract. The climate of the Southern Hemisphere (SH) is stronglyinfluenced by variations in the El Niño–Southern Oscillation (ENSO) andthe Southern Annular Mode (SAM). Because of the limited length ofinstrumental records in most parts of the SH, very little is known about therelationship between these two key modes of variability over time. Usingproxy-based reconstructions and last-millennium climate model simulations,we find that ENSO and SAM indices are mostly negatively correlated over thepast millennium. Pseudo-proxy experiments indicate that currently availableproxy records are able to reliably capture ENSO–SAM relationships back to atleast 1600 CE. Palaeoclimate reconstructions show mostly negativecorrelations back to about 1400 CE. An ensemble of last-millennium climatemodel simulations confirms this negative correlation, showing a stablecorrelation of approximately −0.3. Despite this generally negativerelationship we do find intermittent periods of positive ENSO–SAMcorrelations in individual model simulations and in the palaeoclimatereconstructions. We do not find evidence that these relationshipfluctuations are caused by exogenous forcing nor by a consistent climatepattern. However, we do find evidence that strong negative correlations areassociated with strong positive (negative) anomalies in the InterdecadalPacific Oscillation and the Amundsen Sea Low during periods when SAM andENSO indices are of opposite (equal) sign.  more » « less
Award ID(s):
1805490
PAR ID:
10219217
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
16
Issue:
2
ISSN:
1814-9332
Page Range / eLocation ID:
743 to 756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets. 
    more » « less
  2. Abstract The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern Hemisphere and has wide ranging effects on ecosystems and societies. Despite the SAM’s importance, paleoclimate reconstructions disagree on its variability and trends over the Common Era, which may be linked to variability in SAM teleconnections and the influence of specific proxies. Here, we use data assimilation with a multi-model prior to reconstruct the SAM over the last 2000 years using temperature and drought-sensitive climate proxies. Our method does not assume a stationary relationship between the SAM and the proxy records and allows us to identify critical paleoclimate records and quantify reconstruction uncertainty through time. We find no evidence for a forced response in SAM variability prior to the 20th century. We do find the modern positive trend falls outside the 2 σ range of the prior 2000 years at multidecadal time scales, supporting the inference that the SAM’s positive trend over the last several decades is a response to anthropogenic climate change. 
    more » « less
  3. Abstract Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship. 
    more » « less
  4. Abstract We examine the evidence for large‐scale tropical hydroclimate changes over the Common Era based on a compilation of 67 tropical hydroclimate records from 55 sites and assess the consistency between the reconstructed hydroclimate changes and those simulated by transient model simulations of the last millennium. Our synthesis of the proxy records reveals several regionally coherent patterns on centennial time scales. From 800 to 1000 CE, records from the eastern Pacific and parts of Mesoamerica indicate a pronounced drying event relative to background conditions of the Common Era. In addition, 1400–1700 CE is marked by pronounced hydroclimate changes across the tropics, including dry and/or isotopically enriched conditions in South and East Asia, wet and/or isotopically depleted conditions in the central Andes and southern Amazon in South America, and fresher and/or isotopically depleted conditions in the Maritime Continent. We find notable dissimilarities between the regional hydroclimate changes and global‐scale and hemispheric‐scale temperature reconstructions, indicating that more work needs to be done to understand the mechanisms of the widespread tropical hydroclimate changes during the LIA. Apropos to previous interpretations of large‐scale reorganization of tropical Pacific climate during the LIA, we do not find support for a large‐scale southward shift of the Pacific Intertropical Convergence Zone, while evidence for a strengthened Pacific Walker Circulation and/or an equatorward contraction of the monsoonal Asian‐Australian rain belt exists from limited geographic regions but require additional paleoclimate constraints. Transient climate model simulations exhibit weak forced long‐term tropical rainfall changes over the last millennium but provide several important insights to the proxy reconstructions. 
    more » « less
  5. Abstract Volcanic eruptions can have significant climate impacts and serve as useful natural experiments for better understanding the effects of abrupt, externally forced climate change. Here, we investigate the Indian Ocean Dipole's (IOD) response to the largest tropical volcanic eruptions of the last millennium. Post‐eruption composites show a strong negative IOD developing in the eruption year, and a positive IOD the following year. The IOD and El Niño‐Southern Oscillation (ENSO) show a long‐term damped oscillatory response that can take up to 8 years to return to pre‐eruptive baselines. Moreover, the Interdecadal Pacific Oscillation (IPO) phase at the time of eruption controls the IOD response to intense eruptions, with negative (positive) IPO phasing favoring more negative (positive) IOD values via modulation of the background state of the eastern Indian Ocean thermocline depth. These results have important implications for climate risk in low‐likelihood, high‐impact scenarios, particularly in vulnerable communities unprepared for IOD and ENSO extremes. 
    more » « less