Federated learning (FL) is a distributed machine learning technique to address the data privacy issue. Participant selection is critical to determine the latency of the training process in a heterogeneous FL architecture, where users with different hardware setups and wireless channel conditions communicate with their base station to participate in the FL training process. Many solutions have been designed to consider computational and uploading latency of different users to select suitable participants such that the straggler problem can be avoided. However, none of these solutions consider the waiting time of a participant, which refers to the latency of a participant waiting for the wireless channel to be available, and the waiting time could significantly affect the latency of the training process, especially when a huge number of participants are involved in the training process and share the wireless channel in the time-division duplexing manner to upload their local FL models. In this paper, we consider not only the computational and uploading latency but also the waiting time (which is estimated based on an M/G/1 queueing model) of a participant to select suitable participants. We formulate an optimization problem to maximize the number of selected participants, who can upload their local models before the deadline in a global iteration. The Latency awarE pARticipant selectioN (LEARN) algorithm is proposed to solve the problem and the performance of LEARN is validated via simulations.
more »
« less
Facilitating Exploration with Interaction Snapshots under High Latency
Latency is, unfortunately, a reality when working with large data sets. Guaranteeing imperceptible latency for interactivity is often prohibitively expensive: the application developer may be forced to migrate data processing engines or deal with complex error bounds on samples, and to limit the application to users with high network bandwidth. Instead of relying on the backend, we propose a simple UX design-interaction snapshots. Responses of requests from the interactions are asynchronously loaded in "snapshots". With interaction snapshots, users can interact concurrently while the snapshots load. Our user study participants found it useful not to have to wait for each result and easily navigate to prior snapshots. For latency up to 5 seconds, participants were able to complete extrema, threshold, and trend identification tasks with little negative impact.
more »
« less
- PAR ID:
- 10219498
- Date Published:
- Journal Name:
- 2020 IEEE Visualization Conference (VIS)
- Page Range / eLocation ID:
- 136 to 140
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Web data records are usually accompanied by auxiliary webpage segments, such as filters, sort options, search form, and multi-page links, to enhance interaction efficiency and convenience for end users. However, blind and visually impaired (BVI) persons are presently unable to fully exploit the auxiliary segments like their sighted peers, since these segments are scattered all across the screen, and as such assistive technologies used by BVI users, i.e., screen reader and screen magnifier, are not geared for efficient interaction with such scattered content. Specifically, for blind screen reader users, content navigation is predominantly one-dimensional despite the support for skipping content, and therefore navigating to-and-fro between different parts of the webpage is tedious and frustrating. Similarly, low vision screen magnifier users have to continuously pan back-and-forth between different portions of a webpage, given that only a portion of the screen is viewable at any instant due to content enlargement. The extant techniques to overcome inefficient web interaction for BVI users have mostly focused on general web-browsing activities, and as such they provide little to no support for data record-specific interaction activities such as filtering and sorting – activities that are equally important for facilitating quick and easy access to desired data records. To fill this void, we present InSupport, a browser extension that: (i) employs custom machine learning-based algorithms to automatically extract auxiliary segments on any webpage containing data records; and (ii) provides an instantly accessible proxy one-stop interface for easily navigating the extracted auxiliary segments using either basic keyboard shortcuts or mouse actions. Evaluation studies with 14 blind participants and 16 low vision participants showed significant improvement in web usability with InSupport, driven by increased reduction in interaction time and user effort, compared to the state-of-the-art solutions.more » « less
-
Most mobile health apps employ data visualization to help people view their health and activity data, but these apps provide limited support for visual data exploration. Furthermore, despite its huge potential benefits, mobile visualization research in the personal data context is sparse. This work aims to empower people to easily navigate and compare their personal health data on smartphones by enabling flexible time manipulation with speech. We designed and developed Data@Hand, a mobile app that leverages the synergy of two complementary modalities: speech and touch. Through an exploratory study with 13 long-term Fitbit users, we examined how multimodal interaction helps participants explore their own health data. Participants successfully adopted multimodal interaction (i.e., speech and touch) for convenient and fluid data exploration. Based on the quantitative and qualitative findings, we discuss design implications and opportunities with multimodal interaction for better supporting visual data exploration on mobile devices.more » « less
-
Delivering videos under less-than-ideal network conditions without compromising end-users' quality of experiences is a hard problem. Virtually all prior work follow a piecemeal approach---either "tweaking" the fully reliable transport layer or making the client "smarter." We propose VOXEL, a cross-layer optimization system for video streaming. We use VOXEL to demonstrate how to combine application-provided "insights" with a partially reliable protocol for optimizing video streaming. To this end, we present a novel ABR algorithm that explicitly trades off losses for improving end-users' video-watching experiences. VOXEL is fully compatible with DASH, and backward-compatible with VOXEL-unaware servers and clients. In our experiments emulating a wide range of network conditions, VOXEL outperforms the state-of-the-art: We stream videos in the 90th-percentile with up to 97% less rebuffering than the state-of-the-art without sacrificing visual fidelity. We also demonstrate the benefits of VOXEL for small-buffer regimes like the emerging use case of low-latency and live streaming. In a survey of 54 real users, 84% of the participants indicated that they prefer videos streamed using VOXEL compared to the state-of-the-art.more » « less
-
Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce a densely-distributed edge resource model that leverages capacity-constrained volunteer edge nodes to support elastic computation offloading. Our model also enables the use of geo-distributed edge nodes to further support elasticity. Collectively, these features raise the issue of edge selection. We present a distributed edge selection approach that relies on client-centric views of available edge nodes to optimize average end-to-end latency, with considerations of system heterogeneity, resource contention and node churn. Elasticity is achieved by fine-grained performance probing, dynamic load balancing, and proactive multi-edge node connections per client. Evaluations are conducted in both real-world volunteer environments and emulated platforms to show how a common edge application, namely AR-based cognitive assistance, can benefit from our approach and deliver low-latency responses to distributed users at scale.more » « less