skip to main content

Title: Who is marginalized in energy justice? Amplifying community leader perspectives of energy transitions in Ghana
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
2017789 2021693 2020888
Publication Date:
NSF-PAR ID:
10219950
Journal Name:
Energy Research & Social Science
Volume:
73
Issue:
C
Page Range or eLocation-ID:
101933
ISSN:
2214-6296
Sponsoring Org:
National Science Foundation
More Like this
  1. Food, energy, and water (FEW) are essential for human health and economic development. FEW systems are inextricably interlinked, yet individualized and variable. Consequently, an accurate assessment must include all available and proposed FEW components and their interconnections and consider scale, location, and scope. Remote Alaska locations are examples of isolated communities with limited infrastructure, accessibility, and extreme climate conditions. The resulting challenges for FEW reliability and sustainability create opportunities to obtain practical insights that may apply to other remote communities facing similar challenges. By creating energy distribution models (EDMs), a methodology is proposed, and a tool is developed to measure the impacts of renewable energy (RE) on small FEW systems connected to the microgrids of several Alaska communities. Observing the community FEW systems through an energy lens, three indices are used to measure FEW security: Energy–Water (EW), Energy–Food (EF), and Sustainable Energy (SE). The results indicate the impacts of RE on FEW infrastructure systems are highly seasonal, primarily because of the natural intermittence and seasonality of renewable resources. Overall, there is a large potential for RE integration to increase FEW security as well as a need for additional analysis and methods to further improve the resiliency of FEW systems inmore »remote communities.« less
  2. Binary switches, which are the primitive units of all digital computing and information processing hardware, are usually benchmarked on the basis of their ‘energy–delay product’, which is the product of the energy dissipated in completing the switching action and the time it takes to complete that action. The lower the energy–delay product, the better the switch (supposedly). This approach ignores the fact that lower energy dissipation and faster switching usually come at the cost of poorer reliability (i.e., a higher switching error rate) and hence the energy–delay product alone cannot be a good metric for benchmarking switches. Here, we show the trade-off between energy dissipation, energy–delay product and error–probability for an electronic switch (a metal oxide semiconductor field effect transistor), a magnetic switch (a magnetic tunnel junction switched with spin transfer torque) and an optical switch (bistable non-linear mirror). As expected, reducing energy dissipation and/or energy–delay product generally results in increased switching error probability and reduced reliability.