skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On 2- and 3-Factorizations of Complete 3-Uniform Hypergraphs of Order up to 9
A $$k$$-factorization of the complete $$t$$-uniform hypergraph $$K^{(t)}_{v}$$ is an $$H$$-decomposition of $$K^{(t)}_{v}$$ where $$H$$ is a $$k$$-regular spanning subhypergraph of $$K^{(t)}_{v}$$. We use nauty to generate the 2-regular and 3-regular spanning subhypergraphs of $$K^{(3)}_v$$ for $$v\leq 9$$ and investigate which of these subhypergraphs factorize $$K^{(3)}_v$$ or $$K^{(3)}_v-I$$, where $$I$$ is a 1-factor. We settle this question for all but two of these subhypergraphs.  more » « less
Award ID(s):
1659815
PAR ID:
10219967
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Australasian journal of combinatorics
Volume:
78
Issue:
1
ISSN:
1034-4942
Page Range / eLocation ID:
100-113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / π‘ˆπ‘ˆ ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 βˆ’ 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of πœƒπœƒ 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of β„Ž 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less
  2. A gr e at d e al of i nt er e st s urr o u n d s t h e u s e of tr a n s cr a ni al dir e ct c urr e nt sti m ul ati o n (t D C S) t o a u g m e nt c o g niti v e tr ai ni n g. H o w e v er, eff e ct s ar e i n c o n si st e nt a cr o s s st u di e s, a n d m et aa n al yti c e vi d e n c e i s mi x e d, e s p e ci all y f o r h e alt h y, y o u n g a d ult s. O n e m aj or s o ur c e of t hi s i n c o n si st e n c y i s i n di vi d u al diff er e n c e s a m o n g t h e p arti ci p a nt s, b ut t h e s e diff er e n c e s ar e r ar el y e x a mi n e d i n t h e c o nt e xt of c o m bi n e d tr ai ni n g/ sti m ul ati o n st u di e s. I n a d diti o n, it i s u n cl e ar h o w l o n g t h e eff e ct s of sti m ul ati o n l a st, e v e n i n s u c c e s sf ul i nt er v e nti o n s. S o m e st u di e s m a k e u s e of f oll o w- u p a s s e s s m e nt s, b ut v er y f e w h a v e m e a s ur e d p erf or m a n c e m or e t h a n a f e w m o nt hs aft er a n i nt er v e nti o n. H er e, w e utili z e d d at a fr o m a pr e vi o u s st u d y of t D C S a n d c o g niti v e tr ai ni n g [ A u, J., K at z, B., B u s c h k u e hl, M., B u n arj o, K., S e n g er, T., Z a b el, C., et al. E n h a n ci n g w or ki n g m e m or y tr ai ni n g wit h tr a n scr a ni al dir e ct c urr e nt sti m ul ati o n. J o u r n al of C o g niti v e N e u r os ci e n c e, 2 8, 1 4 1 9 – 1 4 3 2, 2 0 1 6] i n w hi c h p arti ci p a nts tr ai n e d o n a w or ki n g m e m or y t as k o v er 7 d a y s w hil e r e c ei vi n g a cti v e or s h a m t D C S. A n e w, l o n g er-t er m f oll o w- u p t o a ss es s l at er p erf or m a n c e w a s c o n d u ct e d, a n d a d diti o n al p arti ci p a nt s w er e a d d e d s o t h at t h e s h a m c o n diti o n w a s b ett er p o w er e d. W e a s s e s s e d b a s eli n e c o g niti v e a bilit y, g e n d er, tr ai ni n g sit e, a n d m oti v ati o n l e v el a n d f o u n d si g nifi c a nt i nt er a cti o ns b et w e e n b ot h b as eli n e a bilit y a n d m oti v ati o n wit h c o n diti o n ( a cti v e or s h a m) i n m o d els pr e di cti n g tr ai ni n g g ai n. I n a d diti o n, t h e i m pr o v e m e nt s i n t h e a cti v e c o nditi o n v er s u s s h a m c o n diti o n a p p e ar t o b e st a bl e e v e n a s l o n g a s a y e ar aft er t h e ori gi n al i nt er v e nti o n. β–  
    more » « less
  3. Abstract Let f : β„™ 1 β†’ β„™ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁒ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ β„™ 1 ⁒ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁒ ( β„š Β― ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a β„š {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁒ ( a t ) - h D ⁒ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁒ ( β„š Β― ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ Ξ» ^ f t , v ⁒ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁒ ( β„‚ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ β„™ 1 ⁒ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ β„™ 1 ⁒ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X Γ— β„™ 1 β‡’ X Γ— β„™ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative NΓ©ron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place Ξ³ of k , where the local canonical height Ξ» ^ f , Ξ³ ⁒ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  4. Abstract The hedgehog H t is a 3-uniform hypergraph on vertices $$1, \ldots ,t + \left({\matrix{t \cr 2}}\right)$$ such that, for any pair ( i , j ) with 1 ≀ i < j ≀ t , there exists a unique vertex k > t such that { i , j , k } is an edge. Conlon, Fox and RΓΆdl proved that the two-colour Ramsey number of the hedgehog grows polynomially in the number of its vertices, while the four-colour Ramsey number grows exponentially in the square root of the number of vertices. They asked whether the two-colour Ramsey number of the hedgehog H t is nearly linear in the number of its vertices. We answer this question affirmatively, proving that r ( H t ) = O ( t 2 ln t ). 
    more » « less
  5. Abstract Given a graphon $$W$$ and a finite simple graph $$H$$ , with vertex set $V(H)$ , denote by $$X_n(H, W)$$ the number of copies of $$H$$ in a $$W$$ -random graph on $$n$$ vertices. The asymptotic distribution of $$X_n(H, W)$$ was recently obtained by HladkΓ½, Pelekis, and Ε ileikis [17] in the case where $$H$$ is a clique. In this paper, we extend this result to any fixed graph $$H$$ . Towards this we introduce a notion of $$H$$ -regularity of graphons and show that if the graphon $$W$$ is not $$H$$ -regular, then $$X_n(H, W)$$ has Gaussian fluctuations with scaling $$n^{|V(H)|-\frac{1}{2}}$$ . On the other hand, if $$W$$ is $$H$$ -regular, then the fluctuations are of order $$n^{|V(H)|-1}$$ and the limiting distribution of $$X_n(H, W)$$ can have both Gaussian and non-Gaussian components, where the non-Gaussian component is a (possibly) infinite weighted sum of centred chi-squared random variables with the weights determined by the spectral properties of a graphon derived from $$W$$ . Our proofs use the asymptotic theory of generalised $$U$$ -statistics developed by Janson and Nowicki [22]. We also investigate the structure of $$H$$ -regular graphons for which either the Gaussian or the non-Gaussian component of the limiting distribution (but not both) is degenerate. Interestingly, there are also $$H$$ -regular graphons $$W$$ for which both the Gaussian or the non-Gaussian components are degenerate, that is, $$X_n(H, W)$$ has a degenerate limit even under the scaling $$n^{|V(H)|-1}$$ . We give an example of this degeneracy with $$H=K_{1, 3}$$ (the 3-star) and also establish non-degeneracy in a few examples. This naturally leads to interesting open questions on higher order degeneracies. 
    more » « less