skip to main content


Title: On the impacts of roadway hierarchy on the network Macroscopic Fundamental Diagram
Relationships between average network productivity and accumulation or density aggregated 2 across spatially compact regions of urban networks—so called network Macroscopic Fundamental 3 Diagrams (MFDs)—have recently been shown to exist. Various analytical methods have been put 4 forward to estimate a network’s MFD as a function of network properties, such as average block 5 lengths, signal timings, and traffic flow characteristics on links. However, real street networks are 6 not homogeneous—they generally have a hierarchical structure where some streets (e.g., arterials) 7 promote higher mobility than others (e.g., local roads). This paper provides an analytical method 8 to estimate the MFDs of hierarchical street networks by considering features that are specific to 9 hierarchical network structures. Since the performance of hierarchical networks is driven by how 10 vehicles are routed across the different street types, two routing conditions— user equilibrium and 11 system optimal routing—are considered in the analytical model. The proposed method is first 12 implemented to describe the MFD of a hierarchical one-way limited access linear corridor and 13 then extended to a more realistic hierarchical two-dimensional grid network. For both cases, it is 14 shown that the MFD of a hierarchical network may no longer be unimodal or concave as 15 traditionally assumed in most MFD-based modeling frameworks. These findings are verified using 16 simulations of hierarchical corridors. Finally, the proposed methodology is applied to demonstrate 17 how it can be used to make decisions related to the design of hierarchical street network structures.  more » « less
Award ID(s):
1749200
NSF-PAR ID:
10220022
Author(s) / Creator(s):
;
Date Published:
Journal Name:
100th Annual Meeting of the Transportation Research Board
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Network macroscopic fundamental diagrams (MFDs) have recently been shown to exist in real-world urban traffic networks. The existence of an MFD facilitates the modeling of urban traffic network dynamics at a regional level, which can be used to identify and refine large-scale network-wide control strategies. To be useful, MFD-based modeling frameworks require an estimate of the functional form of a network’s MFD. Analytical methods have been proposed to estimate a network’s MFD by abstracting the network as a single ring-road or corridor and modeling the flow–density relationship on that simplified element. However, these existing methods cannot account for the impact of turning traffic, as only a single corridor is considered. This paper proposes a method to estimate a network’s MFD when vehicles are allowed to turn into or out of a corridor. A two-ring abstraction is first used to analyze how turning will affect vehicle travel in a more general network, and then the model is further approximated using a single ring-road or corridor. This approximation is useful as it facilitates the application of existing variational theory-based methods (the stochastic method of cuts) to estimate the flow–density relationship on the corridor, while accounting for the stochastic nature of turning. Results of the approximation compared with a more realistic simulation that includes features that cannot be captured using variational theory—such as internal origins and destinations—suggest that this approximation works to estimate a network’s MFD when turning traffic is present. 
    more » « less
  2. null (Ed.)
    Urban street networks are subject to a variety of random disruptions. The impact of movement restrictions (e.g., one-way or left-turn restrictions) on the ability of a network to overcome these disruptions—that is, its resilience—has not been thoroughly studied. To address this gap, this paper investigates the resilience of one-way and two-way square grid street networks with and without left turns under light traffic conditions. Networks are studied using a simplified routing algorithm that can be examined analytically and a microsimulation that describes detailed vehicle dynamics. In the simplified method, routing choices are enumerated for all possible origin–destination (OD) combinations to identify how the removal of a link affects operations, both when knowledge of the disruption is and is not available at the vehicle’s origin. Disruptions on two-way networks that allow left turns tend to have little impact on travel distances because of the availability of multiple shortest paths between OD pairs and the flexibility in route modification. Two-way networks that restrict left turns at intersections only have a single shortest-distance path between any OD pair and thus experience larger increases in travel distance, even when the disruption is known ahead of time. One-way networks sometimes have multiple shortest-distance routes and thus travel distances increase less than two-way network without left turns when links are disrupted. These results reveal a clear tradeoff between improved efficiency and reduced resilience for networks that have movement restrictions, and can be used as a basis to study network resilience under more congested scenarios and in more realistic network structures. 
    more » « less
  3. Two key aggregated traffic models are the relationship between average network flow and density (known as the network or flow macroscopic fundamental diagram [flow-MFD]) and the relationship between trip completion and density (known as network exit function or the outflow-MFD [o-FMD]). The flow- and o-MFDs have been shown to be related by average network length and average trip distance under steady-state conditions. However, recent studies have demonstrated that these two relationships might have different patterns when traffic conditions are allowed to vary: the flow-MFD exhibits a clockwise hysteresis loop, while the o-MFD exhibits a counter-clockwise loop. One recent study attributes this behavior to the presence of bottlenecks within the network. The present paper demonstrates that this phenomenon may arise even without bottlenecks present and offers an alternative, but more general, explanation for these findings: a vehicle’s entire trip contributes to a network’s average flow, while only its end contributes to the trip completion rate. This lag can also be exaggerated by trips with different lengths, and it can lead to other patterns in the o-MFD such as figure-eight patterns. A simple arterial example is used to demonstrate this explanation and reveal the expected patterns, and they are also identified in real networks using empirical data. Then, simulations of a congestible ring network are used to unveil features that might increase or diminish the differences between the flow- and o-MFDs. Finally, more realistic simulations are used to confirm that these behaviors arise in real networks. 
    more » « less
  4. Abstract

    A vector‐river network explicitly uses realistic geometries of river reaches and catchments for spatial discretization in a river model. This enables improving the accuracy of the physical properties of the modeled river system, compared to a gridded river network that has been used in Earth System Models. With a finer‐scale river network, resolving smaller‐scale river reaches, there is a need for efficient methods to route streamflow and its constituents throughout the river network. The purpose of this study is twofold: (1) develop a new method to decompose river networks into hydrologically independent tributary domains, where routing computations can be performed in parallel; and (2) perform global river routing simulations with two global river networks, with different scales, to examine the computational efficiency and the differences in discharge simulations at various temporal scales. The new parallelization method uses a hierarchical decomposition strategy, where each decomposed tributary is further decomposed into many sub‐tributary domains, enabling hybrid parallel computing. This parallelization scheme has excellent computational scaling for the global domain where it is straightforward to distribute computations across many independent river basins. However, parallel computing for a single large basin remains challenging. The global routing experiments show that the scale of the vector‐river network has less impact on the discharge simulations than the runoff input that is generated by the combination of land surface model and meteorological forcing. The scale of vector‐river networks needs to consider the scale of local hydrologic features such as lakes that are to be resolved in the network.

     
    more » « less
  5. Graph Neural Networks have recently become a prevailing paradigm for various high-impact graph analytical problems. Existing efforts can be mainly categorized as spectral-based and spatial-based methods. The major challenge for the former is to find an appropriate graph filter to distill discriminative information from input signals for learning. Recently, myriads of explorations are made to achieve better graph filters, e.g., Graph Convolutional Network (GCN), which leverages Chebyshev polynomial truncation to seek an approximation of graph filters and bridge these two families of methods. Nevertheless, it has been shown in recent studies that GCN and its variants are essentially employing fixed low-pass filters to perform information denoising. Thus their learning capability is rather limited and may over-smooth node representations at deeper layers. To tackle these problems, we develop a novel graph neural network framework AdaGNN with a well-designed adaptive frequency response filter. At its core, AdaGNN leverages a simple but elegant trainable filter that spans across multiple layers to capture the varying importance of different frequency components for node representation learning. The inherent differences among different feature channels are also well captured by the filter. As such, it empowers AdaGNN with stronger expressiveness and naturally alleviates the over-smoothing problem. We empirically validate the effectiveness of the proposed framework on various benchmark datasets. Theoretical analysis is also provided to show the superiority of the proposed AdaGNN. The open-source implementation of AdaGNN can be found here: https://github.com/yushundong/AdaGNN. 
    more » « less